基于深度学习实例分割的指针仪表读数识别
文章目录
前言
之前已经写过一篇指针读数识别的文章了,但是效果比较差,通用性不强,现在完成了第二个版本,跟第一个版本相比最大的特点是使用了深度学习,Yolact实例分割网络。
链接地址: 指针仪表读数识别1.0
一、指针仪表读数识别效果
1.程序界面
2.程序功能
二、使用步骤
2.1产品说明
2.2使用方法
配置好软件环境后,运行yoloact文件夹中的main函数,出现程序界面如上所示
2.2.1模型选择
提供多个不同的训练模型可供选择
2.2.2文件选择
第一个为输入可为图片或者视频,图片格式为’bmp’, ‘jpg’, ‘jpeg’, ‘png’, ‘tif’, ‘tiff’, ‘dng’, ‘webp’, ‘mpo’,视频格式为’mov’, ‘avi’, ‘mp4’, ‘mpg’, ‘mpeg’, ‘m4v’, ‘wmv’, ‘mkv’。
第二个为获取本地摄像头,电脑内置摄像头,usb摄像头
第三个为ip摄像头,以rtsp://', ‘rtmp://’, ‘http://’, 'https://'开头的视频链接
2.2.3参数选择
设置模型检测的置信度和每次检测的延时,单位ms
2.2.4运行
左侧为开始、暂停按钮,右侧为停止按钮
在选择文件、模型权重、设置参数后,点击开始按钮
检测结束后,右侧显示出处理后的图像
2.2.5结果显示
检测完成后在结果统计中显示出读数结果,保留10条历史记录