指针仪表读数识别2.0-基于深度学习yolact实例分割网络

本文介绍了一种基于深度学习的指针仪表读数识别新方法,利用Yolact实例分割技术,提升了识别准确性和通用性。步骤详细,包括模型选择、文件导入、参数设置和结果显示,演示了从界面到功能的全面优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于深度学习实例分割的指针仪表读数识别



前言

之前已经写过一篇指针读数识别的文章了,但是效果比较差,通用性不强,现在完成了第二个版本,跟第一个版本相比最大的特点是使用了深度学习,Yolact实例分割网络。
链接地址: 指针仪表读数识别1.0


一、指针仪表读数识别效果

演示视频-B站

1.程序界面

界面

2.程序功能

在这里插入图片描述

二、使用步骤

2.1产品说明

界面

2.2使用方法

配置好软件环境后,运行yoloact文件夹中的main函数,出现程序界面如上所示

2.2.1模型选择

在这里插入图片描述

提供多个不同的训练模型可供选择

2.2.2文件选择

在这里插入图片描述

第一个为输入可为图片或者视频,图片格式为’bmp’, ‘jpg’, ‘jpeg’, ‘png’, ‘tif’, ‘tiff’, ‘dng’, ‘webp’, ‘mpo’,视频格式为’mov’, ‘avi’, ‘mp4’, ‘mpg’, ‘mpeg’, ‘m4v’, ‘wmv’, ‘mkv’。
第二个为获取本地摄像头,电脑内置摄像头,usb摄像头
第三个为ip摄像头,以rtsp://', ‘rtmp://’, ‘http://’, 'https://'开头的视频链接

2.2.3参数选择

在这里插入图片描述

设置模型检测的置信度和每次检测的延时,单位ms

2.2.4运行

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

左侧为开始、暂停按钮,右侧为停止按钮
在选择文件、模型权重、设置参数后,点击开始按钮

检测结束后,右侧显示出处理后的图像

2.2.5结果显示

在这里插入图片描述

检测完成后在结果统计中显示出读数结果,保留10条历史记录

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值