怪物牛繁殖问题与常系数线性齐次递推关系式的通解

假设初始有一对牛,每个月生出一对小牛,新生的小牛过三个月成长为大牛,并开始繁殖,在假设所有牛不死亡的情况下,问第 n n n 个月有多少对牛? (假设第 n n n 个月有 a [ n ] a[n] a[n] 对牛,那么 a [ 1 ] = 2 , a [ 2 ] = 3 , a [ 3 ] = 4 , a [ 4 ] = 5 , a [ 5 ] = ⋯ a[1] = 2, a[2] = 3, a[3] = 4, a[4] = 5, a[5] = \cdots a[1]=2,a[2]=3,a[3]=4,a[4]=5,a[5]=依次类推 )

因为新生的小牛经过三个月可以成为大牛并开始繁殖,所以如果假设第 n n n 个月出生 b [ n ] b[n] b[n] 对小牛,那么其等于上个月的大牛对数 b [ n − 1 ] b[n-1] b[n1] 和 第 n − 4 n-4 n4 个月(经过三个月)出生的小牛对数 b [ n − 4 ] b[n-4] b[n4],所以有
b [ n ] = { 1 n = 1 , 2 , 3 b [ n − 1 ] + b [ n − 4 ] n ≥ 4 b[n] = \begin{cases} 1 & n = 1,2,3\\ b[n-1]+b[n-4] & n\ge4 \end{cases} b[n]={1b[n1]+b[n4]n=1,2,3n4

再加上有一对初始的大牛,所以第 n n n 个月的牛对数为 a [ n ] = 1 + ∑ i = 1 n b [ i ] a[n]=1+\sum_{i=1}^n b[i] a[n]=1+i=1nb[i]

所以求出 b [ n ] b[n] b[n],即可得出 a [ n ] a[n] a[n],求 b [ n ] b[n] b[n] 有两种方法:

方法一:
参考Linear recurrence relations with constant coefficients 由递推关系可知
( 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 ) ( b [ n − 1 ] b [ n − 2 ] b [ n − 3 ] b [ n − 4 ] ) = ( b [ n ] b [ n − 1 ] b [ n − 2 ] b [ n − 3 ] ) \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} b[n-1]\\ b[n-2]\\ b[n-3]\\ b[n-4] \end{pmatrix} = \begin{pmatrix} b[n]\\ b[n-1]\\ b[n-2]\\ b[n-3] \end{pmatrix} 1100001000011000b[n1]b[n2]b[n3]b[n4]=b[n]b[n1]b[n2]b[n3]

M = ( 1 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 ) M = \begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix} M=1100001000011000

由于 d e t ( M ) = − 1 ≠ 0 det(M) = -1 \not= 0 det(M)=1=0,所以 M M M 可以对角化为 M = V D V − 1 M = VDV^{-1} M=VDV1,所以有 V D n V − 1 ( b [ 4 ] , b [ 3 ] , b [ 2 ] , b [ 1 ] ) T = ( b [ n ] , b [ n − 1 ] , b [ n − 2 ] , b [ n − 3 ] ) VD^{n}V^{-1}(b[4],b[3],b[2],b[1])^T=(b[n],b[n-1],b[n-2],b[n-3]) VDnV1(b[4],b[3],b[2],b[1])T=(b[n],b[n1],b[n2],b[n3])

方法二:
参考Solving homogeneous linear recurrence relations with constant coefficients,假设 q 1 . q 2 , q 3 , q 4 q_1.q_2,q_3,q_4 q1.q2,q3,q4 是方程 x 4 = x 3 + 1 x^4=x^3+1 x4=x3+1 的四个解,则显然有 q n − 4 ⋅ q 4 = q n − 4 ⋅ q 3 + q n − 4 q^{n-4}\cdot q^4 = q^{n-4} \cdot q^3 + q^{n-4} qn4q4=qn4q3+qn4,所以递推关系 b [ n ] = b [ n − 1 ] + b [ n − 4 ] b[n] = b[n-1]+b[n-4] b[n]=b[n1]+b[n4] 的解是
b [ n ] = k 1 q 1 n + k 2 q 2 n + k 3 q 3 n + k 4 q 4 n b[n]=k_1q_1^n+k_2q_2^n+k_3q_3^n+k_4q_4^n b[n]=k1q1n+k2q2n+k3q3n+k4q4n ,将初始解
{ b [ 1 ] = 1 b [ 2 ] = 1 b [ 3 ] = 1 b [ 4 ] = 1 \begin{cases} b[1]=1 & \\ b[2]=1 & \\ b[3]=1 & \\ b[4]=1 & \\ \end{cases} b[1]=1b[2]=1b[3]=1b[4]=1
代入其中可解出系数 k 1 , k 2 , k 3 , k 4 k_1,k_2,k_3,k_4 k1,k2,k3,k4
所以可以直接推出
a [ n ] = k 1 q 1 n + 1 − q 1 q 1 − 1 + k 2 q 2 n + 1 − q 2 q 2 − 1 + k 1 q 3 n + 1 − q 3 q 3 − 1 + k 1 q 4 n + 1 − q 4 q 4 − 1 + 1 a[n]=k_1\frac{q_1^{n+1}-q_1}{q_1-1}+k_2\frac{q_2^{n+1}-q_2}{q_2-1}+k_1\frac{q_3^{n+1}-q_3}{q_3-1}+k_1\frac{q_4^{n+1}-q_4}{q_4-1}+1 a[n]=k1q11q1n+1q1+k2q21q2n+1q2+k1q31q3n+1q3+k1q41q4n+1q4+1
其中 q q q x 4 − x 3 − 1 = 0 x^4-x^3-1=0 x4x31=0 的解。

其中的一个 q q q 解为
q = − − 3   ( 283 2   3 3 2 − 1 2 ) 1 6 2   12   ( 283 2   3 3 2 − 1 2 ) 2 3 + 3   ( 283 2   3 3 2 − 1 2 ) 1 3 − 16 − ( 283 2   3 3 2 − 1 2 ) 1 3 + 4 3   ( 283 2   3 3 2 − 1 2 ) 1 3 + 1 2 2 − 12   ( 283 2   3 3 2 − 1 2 ) 2 3 + 3   ( 283 2   3 3 2 − 1 2 ) 1 3 − 16 4   3   ( 283 2   3 3 2 − 1 2 ) 1 6 + 1 4 q=-{{\sqrt{-{{\sqrt{3}\,\left({{\sqrt{283}}\over{2\,3^{{{3 }\over{2}}}}}-{{1}\over{2}}\right)^{{{1}\over{6}}}}\over{2\,\sqrt{12 \,\left({{\sqrt{283}}\over{2\,3^{{{3}\over{2}}}}}-{{1}\over{2}} \right)^{{{2}\over{3}}}+3\,\left({{\sqrt{283}}\over{2\,3^{{{3}\over{ 2}}}}}-{{1}\over{2}}\right)^{{{1}\over{3}}}-16}}}-\left({{\sqrt{283} }\over{2\,3^{{{3}\over{2}}}}}-{{1}\over{2}}\right)^{{{1}\over{3}}}+ {{4}\over{3\,\left({{\sqrt{283}}\over{2\,3^{{{3}\over{2}}}}}-{{1 }\over{2}}\right)^{{{1}\over{3}}}}}+{{1}\over{2}}}}\over{2}}-{{ \sqrt{12\,\left({{\sqrt{283}}\over{2\,3^{{{3}\over{2}}}}}-{{1}\over{ 2}}\right)^{{{2}\over{3}}}+3\,\left({{\sqrt{283}}\over{2\,3^{{{3 }\over{2}}}}}-{{1}\over{2}}\right)^{{{1}\over{3}}}-16}}\over{4\, \sqrt{3}\,\left({{\sqrt{283}}\over{2\,3^{{{3}\over{2}}}}}-{{1}\over{ 2}}\right)^{{{1}\over{6}}}}}+{{1}\over{4}} q=2212(2323283 21)32+3(2323283 21)3116 3 (2323283 21)61(2323283 21)31+3(2323283 21)314+21 43 (2323283 21)6112(2323283 21)32+3(2323283 21)3116 +41

常系数线性齐次递推关系式的通解求法:
  1. Linear recurrence relations with constant coefficients
  2. Solving homogeneous linear recurrence relations with constant coefficients
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值