【推荐】不到100行实现的全面NLP教程(pytorch+tensorflow)

NLP-tutorial是一个使用TensorFlow和Pytorch学习NLP的教程,涵盖词表示、CNN、RNN、注意力机制及Transformer模型,每个模型都用实例展示,如句子分类和机器翻译,旨在快速提升理论与实践能力。
摘要由CSDN通过智能技术生成

点击上方,选择星标置顶,每天给你送干货

阅读大概需要2分钟

跟随小博主,每天进步一丢丢

NLP-tutorial是为使用TensorFlow和Pytorch学习NLP的人编写的教程。NLP中的大多数模型都是用不到100行代码实现的。(注释或空行除外)

作者在每一个模型中,都用了一种实例来表示实现该模型,比如句子分类、机器翻译等。每个案例都对应一篇论文,大家可以对应论文再结合百行不到的代码,我相信你的理论与实践会进步的飞快的!

github地址:

https://github.com/graykode/nlp-tutorial

作者:

Tae Hwan Jung(Jeff Jung) @graykode

具体内容

1. 基础词表示模型和具体案例

2. CNN和具体案例

3.RNN和具体案例

4. 注意力机制和具体案例

5. 基于Transformer的模型和具体案例

具体案例与pytorch和tensorflow行数对比

看完上面的对比,我只想说,我爱pytorch,啊哈哈哈哈!

依赖库版本:

  • Python 3.5+

  • Tensorflow 1.12.0+

  • Pytorch 0.4.1+

  • Plan to add Keras Version


PS:本公众号前几天开始了【一分钟论文】专栏,今天又添加了【一分钟知识】专栏,还望大家多多支持和指教!嘿嘿!有好文的伙伴,可以投稿给我哈!有稿酬的!每天进步一丢丢,加油加油!

没进深度学习自然语言处理技术交流群的伙伴注意啦!

备注 昵称-学校-方向 加下面微信即可!

好啦,给个好看后,赶紧去看看吧!加油加油!

推荐阅读:

一大批历史精彩文章啦

【一分钟论文】 NAACL2019-使用感知句法词表示的句法增强神经机器翻译

【一分钟论文】轻松解读Semi-supervised Sequence Learning半监督序列学习

详解Transition-based Dependency parser基于转移的依存句法解析器

干货 | 找工作的经验总结(一)

经验 | 初入NLP领域的一些小建议

学术 | 如何写一篇合格的NLP论文

干货 | 那些高产的学者都是怎样工作的?

是时候研读一波导师的论文--一个简单有效的联合模型

近年来NLP在法律领域的相关研究工作


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值