pytorch构建分类器
import numpy as np
import matplotlib.pyplot as plt
import torch
import torchvision
def imshow(img):
img = img/2+0.5
npimg = img.numpy()
plt.imshow(np.transpose(npimg,(1,2,0)))
plt.show()
dataiter = iter(trainloader)
images,labels = dataiter.next()
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(3,6,5)
self.vonv2 = nn.Conv2d(6,16,5)
self.pool = nn.MaxPool2d(2,2)
self.fc1 = nn.Linear(16*5*5,120)
self.fc2 = nn.Linear(120,84)
self.fc3 = nn.Linear(84,10)
def forward(self,x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1,16*5*5)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
import torch.optim as optim
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(),lr=0.001,momentum=0.9)
for epoch in range(2):
running_loss = 0.0
for i,data enumerate(trainloder,0):
inputs,labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs,labels)
loss.backward()
optimizer.step()
running_loss+=loss.item()
if(i+1)%2000==0:
print('[%d,%5d] loss:%.3f'%(epoch+1,i+1,running_loss/2000))
running_loss=0.0
print('Finished Training.')
PATH = '。/cifar_net.pth'
torch.save(net.state_dict(),PATH)
dataiter = iter(testloader)
images,label = dataiter.next()
imshow(torchvision.utils.make_grid(images))
print('GroundTruth:',''.join('%5s'% classes[labels[j]] for j in range(4)))
net.load_state_dict(torch.load(PATH))
outputs = net(images)
_,predicted = torch.max(outputs,1)
print('GroundTruth:',''.join('%5s'% classes[predicted[j]] for j in range(4)))
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images,labels = data
outputs = net(images)
_,predicted = torch.max(outputs.data,1)
total+=labels.size(0)
correct ++(predicted==labels).sum().item()
print('Accuracy of the network on the 10000 test images:%d %%' %(100*correct/total))
class_correct = list(0. for i in range(10))
class_total = list(0. for i in range(10))
with torch.no_grad():
for data in testloader:
images,labels = data
outputs = net(images)
_,predicted = torch.max(outputs,1)
c = (predicted == labels).squeeze()
for i in range(4):
label = labels[i]
class_correct[label]+=c[i].item()
class_total[label]+=1
for i in range(10):
print('Accuracy of the &5s :%2d %%' %(classes[i],100*class_correct[i]/class_total[i]))