【面经】NLP算法-字节跳动

本文分享了面试前的准备策略,包括技术面和HR面的应对技巧,强调了C++编程、边界条件处理、TopK问题的重要性,并通过具体项目提问如BERT、LSTM、WordEmbedding、Transformer的理解,以及编程题的解决思路。

点击上方,选择星标置顶,每天给你送干货

阅读大概需要4分钟

跟随小博主,每天进步一丢丢

来自:程序媛驿站

作者:西柚媛

提前批在7月中旬,三面技术面 + 一面HR面,建议大家尽早准备。

体验总结

a. 面试时,编程题可以使用 C++ 是非常加分的

b. 一定要注意边界条件,面试者在写边界条件时面试官可能会说“这个没关系,主体对就行”,但是如果面试者不主动去写边界条件,面试官可能会说你的答案不是很完整,有因此扣分的可能性。

c. topk 问题可能会迟到,但永远不会缺席

一面 

  • 自我介绍+项目

  • 项目用了什么LOSS,使用的 LSTM 维度是多少?

  • 项目扩展,面试官提了个相似任务,有什么思路?

  • 单向双向 BERT 与BiLSTM 有什么不同? 

  • 如何解决梯度消失弥散 ?

  • wordembedding有哪些?(发展史以及word2vec的两种训练方法与两种加速方法) 

  • transformer讲一下?(KQV position)

  • 一道编程题:

    给一个数组A,如何变成数组B,B要满足这个形式 B0 >= B1<= B2 >= B3 <= B4….【leetcode324】

    (不需要对数组排序,只需要将数组A按照中位数分成两集合,大集合内的数放奇数位,小集合内的数放偶数位。分成两集合的方法:先得到数组长度len,然后使用快排剪枝或者使用堆来选出两个大小为len/2的集合,可看作topk问题)

二面 

  • 自我介绍+项目 

  • CRF讲一下

  • 交叉熵loss公式   

  • BERT与ELMO的区别  

  • pytorch的代码流程(我是这样回答的:预处理数据/词表-写好模型-定义损失和优化器-训练-测试)

  • Dropout的原理

  • sgd与adam的区别    

  • 机器学习只简单的问了一些

  • 一道编程题:最快速度最小空间求一个数组的第k小

  • 任务场景:商品的分级分类问题

  • L1L2正则化

三面 

  • 自我介绍+项目 

  • x, y是独立的随机变量,方差期望已知,那么如何求 xy 的方差

  • 讲一下BERT

  • SoftMax + CrossEntropy的反向梯度求导


方便交流学习,备注:昵称-学校(公司)-方向,进入DL&NLP交流群。

方向有很多:机器学习、深度学习,python,情感分析、意见挖掘、句法分析、机器翻译、人机对话、知识图谱、语音识别等。

记得备注呦

推荐阅读:

【ACL 2019】腾讯AI Lab解读三大前沿方向及20篇入选论文

【一分钟论文】IJCAI2019 | Self-attentive Biaffine Dependency  Parsing

【一分钟论文】 NAACL2019-使用感知句法词表示的句法增强神经机器翻译

【一分钟论文】Semi-supervised Sequence Learning半监督序列学习

【一分钟论文】Deep Biaffine Attention for Neural Dependency Parsing

详解Transition-based Dependency parser基于转移的依存句法解析器

经验 | 初入NLP领域的一些小建议

学术 | 如何写一篇合格的NLP论文

干货 | 那些高产的学者都是怎样工作的?

一个简单有效的联合模型

近年来NLP在法律领域的相关研究工作


让更多的人知道你“在看”

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值