点击上方,选择星标或置顶,每天给你送干货!
阅读大概需要4分钟
跟随小博主,每天进步一丢丢
来自:程序媛驿站
作者:西柚媛
提前批在7月中旬,三面技术面 + 一面HR面,建议大家尽早准备。
体验总结
a. 面试时,编程题可以使用 C++ 是非常加分的
b. 一定要注意边界条件,面试者在写边界条件时面试官可能会说“这个没关系,主体对就行”,但是如果面试者不主动去写边界条件,面试官可能会说你的答案不是很完整,有因此扣分的可能性。
c. topk 问题可能会迟到,但永远不会缺席
一面
自我介绍+项目
项目用了什么LOSS,使用的 LSTM 维度是多少?
项目扩展,面试官提了个相似任务,有什么思路?
单向双向 BERT 与BiLSTM 有什么不同?
如何解决梯度消失弥散 ?
wordembedding有哪些?(发展史以及word2vec的两种训练方法与两种加速方法)
transformer讲一下?(KQV position)
一道编程题:
给一个数组A,如何变成数组B,B要满足这个形式 B0 >= B1<= B2 >= B3 <= B4….【leetcode324】
(不需要对数组排序,只需要将数组A按照中位数分成两集合,大集合内的数放奇数位,小集合内的数放偶数位。分成两集合的方法:先得到数组长度len,然后使用快排剪枝或者使用堆来选出两个大小为len/2的集合,可看作topk问题)
二面
自我介绍+项目
CRF讲一下
交叉熵loss公式
BERT与ELMO的区别
pytorch的代码流程(我是这样回答的:预处理数据/词表-写好模型-定义损失和优化器-训练-测试)
Dropout的原理
sgd与adam的区别
机器学习只简单的问了一些
一道编程题:最快速度最小空间求一个数组的第k小
任务场景:商品的分级分类问题
L1L2正则化
三面
自我介绍+项目
x, y是独立的随机变量,方差期望已知,那么如何求 xy 的方差
讲一下BERT
SoftMax + CrossEntropy的反向梯度求导
方便交流学习,备注:昵称-学校(公司)-方向,进入DL&NLP交流群。
方向有很多:机器学习、深度学习,python,情感分析、意见挖掘、句法分析、机器翻译、人机对话、知识图谱、语音识别等。
记得备注呦
推荐阅读:
【ACL 2019】腾讯AI Lab解读三大前沿方向及20篇入选论文
【一分钟论文】IJCAI2019 | Self-attentive Biaffine Dependency Parsing
【一分钟论文】 NAACL2019-使用感知句法词表示的句法增强神经机器翻译
【一分钟论文】Semi-supervised Sequence Learning半监督序列学习
【一分钟论文】Deep Biaffine Attention for Neural Dependency Parsing
详解Transition-based Dependency parser基于转移的依存句法解析器
让更多的人知道你“在看”