字节跳动算法实习三面过面经

本文是作者关于字节跳动算法实习的面试经历,从一面到HR面,涵盖了Bert、Transformer等模型的讨论,过拟合、优化器等算法问题,以及代码题的解答。在面试过程中,作者意识到自己在算法方面的不足,并在后续面试中进行了针对性复习。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

字节跳动算法实习三面过面经

数不清这是第几次面字节了,之前都没怎么进过二面
这次应该是HR把我从简历池里捞出来
一面是国际社区产品挂了,转到抖音电商,再面了两次过了
据说这个团队在扩张
HR特别好,一面挂后帮我捞到另一个团队,并且提醒我复习薄弱的地方

自我介绍

国内top2本科大三数据科学,大二开始搞nlp,进过两个实验室
20年暑假参加ByteCamp做了一个nlp项目,购房queryNER,用了Bert+CRF
目前在实验室搞多选阅读理解,无论文,在第四范式做平台研发实习
GPA低,大概率本科就业
(顺便宣传一下第四范式,实习体验极佳,上班时间自由也没人push,稳定每天早10晚7,公司环境好,AI独角兽发展前景也好)

一面

都是根据项目和科研中的细节提问
问Bert问transformer,为什么好
Bert、transformer、LSTM这些模型基本每次都会问
说我的项目数据很少,会不会过拟合
深挖过拟合,BatchNormalization细节
我用了 Adam优化器,问Adam细节
这两个题我回答的不好,一面结束后HR提醒我算法方面薄弱

代码题是

<think>好的,我现在需要帮用户查找关于算法面试的相关资料、书籍、题目和解答。首先,我得回忆用户提供的引用内容。引用[1]提到面试总结分为互联网、外企、国企券商三个方向,用户可能对这些领域的面试资料感兴趣。引用[2]详细说明了技术岗面试的结构,包括机试、技术、主管、HR等,还提到准备面试的优先级和考察内容,比如手撕代码、项目经验、算法八股。 用户明确想要算法面试的资料,包括书籍、资料、题目和解答。我需要整理常见的推荐资源,同时结合引用中的信息,比如算法八股和项目经验的重要性。首先,书籍方,经典的《算法导论》和《编程珠玑》是必推的,但可能用户需要更贴近面试的书籍,比如《剑指Offer》和《程序员面试金典》。这些书针对面试题目,提供解答和思路,符合用户需求。 在线资源方,LeetCode和牛客网是主要的刷题平台,特别是LeetCode的讨论区和题解能帮助用户理解题目。引用[2]中提到手撕代码是重点,所以必须强调刷题的重要性。此外,GitHub上的面试仓库,如“CS-Notes”和“InterviewMap”,整理了常见的面试知识点和题目,这些资源应该推荐。 项目经验方,引用[1]和[2]都提到项目是面试中的重要部分。用户可能需要知道如何准备项目描述,比如在Kaggle比赛或实习项目中的经验,突出解决的问题和技术细节。Kaggle和天池平台可以作为获取项目经验的途径。 算法八股文指的是常考的理论问题,比如机器学习基础、数据结构与算法。引用[2]提到技术会考察这些,所以需要推荐相关的复习资料,如《百机器学习》和《统计学习方法》。此外,整理高频考点,如动态规划、树结构操作等,能帮助用户有针对性准备。 公司针对性准备部分,根据引用[1]的不同公司类型,互联网大厂可能侧重算法题和系统设计,外企注重代码质量和计算机基础,国企券商可能结合业务场景。用户需要根据不同公司调整准备策略。 模拟面试,引用[2]提到可能有手撕代码环节,推荐使用Pramp或找伙伴练习,提升实战能力。同时,经分享平台如牛客网和一亩三分地,能提供实际面试题目和经验,用户可以参考。 总结下来,我需要将这些内容分门别类,结构清晰地呈现,包括书籍推荐、在线资源、项目准备、算法八股、公司差异和模拟面试。同时,生成相关问题,引导用户深入思考,比如如何高效刷题,项目经验不足怎么办,应对压力的技巧等。确保回答符合用户需求,参考了提供的引用内容,并覆盖用户可能关心的各个方。</think>### 算法面试资料与准备指南 #### 一、核心书籍推荐 1. **《剑指Offer》** - 覆盖高频算法题型(如二叉树、动态规划、链表操作),提供多种解题思路和优化方法 - 示例:旋转数组的最小值问题(二分法变体)[^2] 2. **《程序员面试金典(Cracking the Coding Interview)》** - 系统讲解算法、系统设计、向对象设计等题型 - 包含行为面试技巧,如$O(n)$时间复杂度优化案例 3. **《算法导论》** - 理论基础必备,重点章节:动态规划(DP)、贪心算法、图论 - 推导示例:$$T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n)$$ 4. **《百机器学习》** - 算法岗特有考点:机器学习八股(如SVM推导、梯度消失问题) --- #### 二、在线资源与题库 1. **LeetCode** - **必刷标签**:Top 100 Liked Questions、企业题库(如字节跳动高频题) - **进阶训练**:周赛/双周赛模拟真实编码环境[^2] 2. **牛客网** - 包含历年大厂真题(如阿里、腾讯) - 模拟面试功能支持白板编程 3. **GitHub资源** - **CS-Notes**:算法模板与题型分类(如滑动窗口模板) - **labuladong的算法小抄**:动态规划框架(状态转移方程设计) --- #### 三、项目经验准备 1. **项目描述公式** ```plaintext 问题背景 → 技术选型 → 核心贡献 → 量化结果 ``` - 示例: *"在Kaggle房价预测项目中,通过Stacking集成XGBoost和LightGBM,AUC提升3%,排名前5%"[^1]* 2. **替代方案** - 无实习经历时:复现顶会论文(如BERT改进方案)、参与开源项目(如Apache项目提交PR) --- #### 四、算法八股高频考点 | 类别 | 典型问题 | 快速复习要点 | |--------------------|-----------------------------------|----------------------------------| | 数据结构 | 红黑树 vs 哈希表应用场景 | 红黑树保证$O(\log n)$操作复杂度 | | 机器学习 | 交叉熵损失函数推导 | 从极大似然估计出发推导公式 | | 系统设计 | 设计短域名服务 | 哈希算法 + 分布式ID生成策略 | --- #### 五、公司类型差异应对 1. **互联网大厂** - 重点:Hard级别算法题(如Google的二维前缀和优化) - 参考:LeetCode企业题库 2. **外企(如微软、Amazon)** - 特色考点:代码规范(如防御性编程)、并发问题(死锁条件$hold \& wait$) 3. **国企/券商** - 结合业务的场景题:如金融风控中的异常检测算法选型 --- #### 六、模拟面试工具 1. **Pramp**:免费跨国界技术面试配对 2. **Interviewing.io**:匿名面试硅谷工程师 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值