【推荐系统】那些年, 引用量超1000的经典推荐系统论文

点击上方,选择星标置顶,每天给你送干货

阅读大概需要9分钟

跟随小博主,每天进步一丢丢


来自 | 知乎 

作者 | 育心

链接 | https://zhuanlan.zhihu.com/p/183753290

编辑 | 机器学习与推荐算法

之前按照时间线的方式整理和梳理了56篇经典的推荐系统论文,详见一文尽览推荐系统模型演变史。值得注意的是,其中大部分论文的引用量超过了一千,有的甚至过了万。

今天,我们换个角度来梳理下这些年推荐系统领域超过一千引用量的论文。回想一下你阅读了其中的多少篇呢,你的论文贡献了多少引用量给这些经典论文呢?下一篇的经典论文又会花落谁家呢?

注:加粗数字表示引用量,引用量按照由少到多排序

1. 1012-Ontological user profiling in recommender systems.

2. 1031-Deep Neural Networks for YouTube Recommendations.

3. 1060-Internet Recommendation Systems.

4. 1072-Trust in recommender systems.

5. 1086-Being accurate is not enough:how accuracy metrics have hurt recommender systems.

6. 1088- Collaborative Filtering Recommender Systems.

7. 1100-Advances in Collaborative Filtering.

8. 1111-Method, system and personalized web content manager responsive to browser viewers' psychological preferences, behavioral responses and physiological stress indicators.

9. 1204-Hidden factors and hidden topics:understanding rating dimensions with review text.

10. 1219-Trust-aware recommender systems.

11. 1233-A matrix factorization technique with trust propagation for recommendation in social networks.

12. 1253 - Performance of Recommender Algorithms on Top-N Recommendation Tasks.

13. 1282-SoRec:social recommendation using probabilistic matrix factorization.

14. 1344-Evaluating Recommendation Systems.

15. 1391-Taking the Human Out of the Loop:A Review of Bayesian Optimization.

16. 1395-Content-based Recommender Systems:State of the Art and Trends.

17. 1417-Neural Collaborative Filtering.

18. 1420-Recommender systems with social regularization.

19. 1461-Collaborative topic modeling for recommending scientific articles.

20. 1468-Incorporating contextual information in recommender systems using a multidimensional approach.

21. 1502-Hybrid web recommender systems.

22. 1586-A contextual-bandit approach to personalized news article recommendation.

23. 1672-The Netflix Prize.

24. 1753-Latent semantic models for collaborative filtering.

25. 1794-The MovieLens Datasets:History and Context.

26. 1797-Improving recommendation lists through topic diversification.

27. 1812-Content-boosted collaborative filtering for improved recommendations.

28. 1829-Content-based book recommending using learning for text categorization.

29. 1835-Propagation of trust and distrust.

30. 1867-Eigentaste:A Constant Time Collaborative Filtering Algorithm.

31. 1877-What makes a helpful online review?a study of customer reviews on amazon.com.

32. 1880-Application of Dimensionality Reduction in Recommender System - A Case Study.

33. 1899-The influence of online product recommendations on consumers' online choices.

34. 2037-Collaborative filtering recommender systems.

35. 2056-Methods and metrics for cold-start recommendations.

36. 2362-Recommender systems survey.

37. 2364-Context-Aware Recommender Systems.

38. 2431-E-Commerce Recommendation Applications.

39. 2449-Collaborative Filtering for Implicit Feedback Datasets.

40. 2557-Item-based top- N recommendation algorithms.

41. 2693-A distributed, architecture-centric approach to computing accurate recommendations from very large and sparse datasets.

42. 2779-Content-based recommendation systems.

43. 2897-Collaborative filtering with temporal dynamics.

44. 2980-The dynamics of viral marketing.

45. 3224-Factorization meets the neighborhood:a multifaceted collaborative filtering model.

46. 3618-A Survey of Collaborative Filtering Techniques.

47. 4656-Hybrid Recommender Systems:Survey and Experiments.

48. 6520-Evaluating collaborative filtering recommender systems.

49. 6948-Amazon.com recommendations:item-to-item collaborative filtering.

50. 7459-Matrix Factorization Techniques for Recommender Systems.

51. 9317-Item-based collaborative filtering recommendation algorithms.

52. 11644-Toward the next generation of recommender systems:a survey of the state-of-the-art and possible extensions.


https://github.com/hongleizhang/RSPapers

说个正事哈

由于微信平台算法改版,公号内容将不再以时间排序展示,如果大家想第一时间看到我们的推送,强烈建议星标我们和给我们多点点【在看】。星标具体步骤为:

(1)点击页面最上方深度学习自然语言处理”,进入公众号主页。

(2)点击右上角的小点点,在弹出页面点击“设为星标”,就可以啦。

感谢支持,比心

投稿或交流学习,备注:昵称-学校(公司)-方向,进入DL&NLP交流群。

方向有很多:机器学习、深度学习,python,情感分析、意见挖掘、句法分析、机器翻译、人机对话、知识图谱、语音识别等。

记得备注呦

推荐两个专辑给大家:

专辑 | 李宏毅人类语言处理2020笔记

专辑 | NLP论文解读


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值