武汉大学提出:用于基于统一Aspect的情感分析的关系感知协作学习

71cec0c3125f6223b1d0eda8a5696396.png

作者: 周婷

方向: 情感分析

学校: 中山大学

72d5095147f2cef8e9ecdecbdca6305a.png

论文:Relation-Aware Collaborative Learning for Unified Aspect-Based Sentiment Analysis

录取:ACL2020

单位:武汉大学

任务定义

给定句子,定义三个AE、OE、SC的序列标注问题:

  • AE 目的是预测一个tag序列 (和原始句子等长),其中 分别表示 begining of, inside of, outside of 一个aspect term。

  • OE 目的是预测一个tag序列(和原始句子等长),其中分别表示 begining of, inside of, outside of 一个opinion term。

  • SC 目的是预测一个tag序列(和原始句子等长),其中分别表示每个单词的极性。

fd9f27b3cf03283317867ffdfdbaa8a2.png
左图是全框架,右图是一个RACL的具体结构

结构解析

1.输入部分是词嵌入经过一个全连接层得到

2.首先进行子任务私有特征的编码,得到面向三个子任务的特征、、

利用卷积得到AE-oriented features 和OE-oriented features ,考虑到的是这两个任务与词的临近词相关性很大。

2652c4bb40b3b16b25a502fc7e65b6df.png

为了得到SC-oriented features

首先从中利用CNN编码上下文特征,然后将共享向量视为query方面,并用注意力机制计算query和上下文特征之间的语义关系,得到(利用的是实现的表达)

c00590c65a1875ac11d065cc0d9a745c.png0d9566175c117b55934aa9b8762cf2dc.png8be61f9e22570e2384fef50489b68592.png

3.Propagating Relations for Collaborative Learning

b92c5cd7203968fb0bce39886122d77b.png

是AE和OE之间的双向关系,是OE向AE传递的部分,计算方法是和交互,利用表达。然后将交互部分同原来的面向AE的特征拼接在一起,经过一个线性层和softmax就可以得到任务AE的分类结果。同理得到任务OE的分类结果。

e9bc36684e9c4cdc209b67c8e0751e1c.pngf67821cf4f6e3c17f99c5ab10847db14.pngc78e749431e205a922f6e58d4a931e3f.png276a2dc75ee7470528c61c3603cc9fde.png

此外,一个单词不可以既是方面词又是情感词,因此加入了合页损失作为正则项来约束和

f17b4011e0e0149567f172e3d8310674.png

R2是SC和之间的三元关系。注意直接使用注意力权重来相加的,而不是在最后阶段。

bd3fb328e31572d98042819a25103e57.png

R3是SC和OE之间的双向关系,这表明,在对情感极性进行预测时,需要对抽取出的观点术语多加关注。为了建模R3,采用和R2同样的方式,也就是对SC中的利用生成的 tag序列进行更新,如下:

b09ed305380ca021e3c16bce19228102.png

这样的话情感词在注意力机制中可以得到更大的权重,从而有利于情感分类。

得到上述方式完成交互后的后,我们可以按照式子4重新计算面向SC任务的特征,然后我们将和拼接在一起作为最后的SC的特征,并将它们经过一个全连接层后去预测方面极性。

9ec29902619120c9bf3f90e25769bf50.png

4.Stacking RACL to Multiple Layers以上是一个RACL模块的输出,本实验堆叠了多个模块。具体来说,我们首先编码第一层特征,,,在第二层将这些特征输入到SC,AE和OE去生成,,。以此类推可以将RACL堆叠到L层。最后将各层的最终预测结果进行平均池化的操作

0c0938884fa4e93d472ad9252057f525.png

这种shortcut-like的架构可以促进低层中的功能具有意义和信息量,反过来这也有助于高层做出更好的预测。

损失函数

最终RACL总的损失的 L 是所有子任务的损失之和加上正则项的损失,也就是,其中是系数,.

方法比较和Case分析

和不同的历史方法作比较:

1be1af2fe0552ec8c1d6a39ed17bba95.png

关于本文提出的方法的简单变种的消融实验:

9d6b3f879bf88a689894b6376fcbbc3b.png

超参和的影响:127884ca6a365f50daa7e1342a528d3b.png

Case分析:

577bea287e76011fb4ab65489fdde184.png

关于上面的可视化分析:

e67b00b87635f2bff640c1bdaab8e59b.png

最后就是不同方法的计算量分析:

453d2f94328698488a0b9aa3fe7fa77c.png

📝论文解读投稿,让你的文章被更多不同背景、不同方向的人看到,不被石沉大海,或许还能增加不少引用的呦~ 投稿加下面微信备注“投稿”即可。

最近文章

为什么回归问题不能用Dropout?

Bert/Transformer 被忽视的细节

中文小样本NER模型方法总结和实战

一文详解Transformers的性能优化的8种方法

DiffCSE: 将Equivariant Contrastive Learning应用于句子特征学习

苏州大学NLP团队文本生成&预训练方向招收研究生/博士生(含直博生)

NIPS'22 | 重新审视区域视觉特征在基于知识的视觉问答中的作用


投稿或交流学习,备注:昵称-学校(公司)-方向,进入DL&NLP交流群。

方向有很多:机器学习、深度学习,python,情感分析、意见挖掘、句法分析、机器翻译、人机对话、知识图谱、语音识别等。

47be25a1c42bfae79de1619416b3d7b8.png

记得备注~

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值