斯坦福等学者对ChatGPT做了在NLP几乎所有任务上的优劣势分析

342d651a0f655a426882177c186f4640.png70a7e4861927e25f28d9ea920e12b3b4.png

进NLP群—>加入NLP交流群

一句话总结

在NLP的7个代表性任务中的20个流行数据集上系统性的分析ChatGPT的zero-shot学习能力,最终得出ChatGPT在许多有利于推理能力的任务上表现良好(例如,算术推理),而在解决序列标注等特定任务时仍然有待提高。

论文:IS CHATGPT A GENERAL-PURPOSE NATURAL LANGUAGE PROCESSING TASK SOLVER?
链接:https://arxiv.org/pdf/2302.06476.pdf
单位:南洋理工、亚马逊、上交、佐治亚理工、斯坦福

摘要

在参数规模进步的推动下,大型语言模型 (LLM) 已经证明能够执行各种自然语言处理 (NLP) 零样本任务,即无需对下游数据进行调整。

最近,ChatGPT的首次亮相引起了自然语言处理 (NLP) 社区的极大关注,因为它可以对人类输入产生高质量的响应,并根据后续对话自我纠正先前的错误。

然而,尚不清楚 ChatGPT 是否可以作为一个通才模型,可以零样本地执行许多 NLP 任务。

在这项工作中,我们通过在涵盖 7 个代表性任务类别的 20 个流行 NLP 数据集上对其进行评估,对 ChatGPT 的零样本学习能力进行了实证分析。

通过广泛的实证研究,我们证明了当前版本的 ChatGPT 的有效性和局限性。

我们发现 ChatGPT 在许多有利于推理能力的任务(例如,算术推理)上表现良好,但在解决序列标记等特定任务时仍然面临挑战。

我们还通过定性案例研究提供深入分析。

实验与分析

七大任务的输入格式:30d26f13ee49bae92233b282f4a668fe.png58ba11094ba768e8847caaf44ffd13c2.png

主要发现和见解总结如下:

  1. 尽管 ChatGPT 作为可以执行多项任务的通才模型显示出一定的能力,但它的性能通常比针对给定任务进行微调的模型差。732cfd200c39d7c1693f7776b5996305.png

  2. ChatGPT 的卓越推理能力在算术推理任务中得到了经验证实。然而,ChatGPT 在常识、符号和逻辑推理任务中的表现通常不如 GPT-3.5,例如通过生成不确定的响应。94d092078f1c4644711d5459cf768738.png

  3. ChatGPT 在支持推理能力的自然语言推理任务和问答(阅读理解)任务方面优于 GPT-3.5,例如确定文本对中的逻辑关系。具体来说,ChatGPT 更擅长处理与事实一致的文本(即,更擅长对蕴含而不是非蕴含进行分类)。7cb14dbc0e3fefbe72b9db1931998b06.png6e5db6bf9314833026b9662823c95c49.pngd80674b9d2f65b220f6050b731df65a1.png

  4. ChatGPT 在对话任务方面优于 GPT-3.5。82b7ca8df95d51fe699dcab1ab6c4875.png

  5. ChatGPT 生成更长的摘要,并且在摘要任务方面比 GPT-3.5 表现更差。然而,在零镜头指令中明确限制摘要长度会损害摘要质量,从而导致更差的性能。46616efdd6faada084c07ea706e0f3c6.png

  6. 尽管显示出作为通才模型的前景,但 ChatGPT 和 GPT-3.5 在某些任务上都面临挑战,例如序列标记。d48956af1972a852bc388ba8b1833a99.pngf39e3e2ebf8f5ee867ee8ad2abe058fc.png

  7. ChatGPT 的情感分析能力接近 GPT-3.5。f9e8d3ea55848cd43c79787fa5f3d2a7.png

结论

我们根据经验研究了 ChatGPT 在涵盖代表性任务类别的大量多样化数据集上的零样本学习能力。

广泛的实验结果和分析证明了 ChatGPT 在不同类型的 NLP 任务中的有效性和当前的局限性。

例如,作为一个强大的通才模型,ChatGPT 一方面擅长推理和对话任务;另一方面,ChatGPT 在解决序列标注等特定任务时仍面临挑战。

我们希望这项研究能够启发未来的工作,例如在 NLP 任务中利用 ChatGPT 的推理和对话功能,以及解决通才模型在他们目前遇到的任务中的局限性。


进NLP群—>加入NLP交流群

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值