AIGC最新综述:从 GAN 到 ChatGPT 的AI生成历史

该综述探讨了AIGC的演进,包括生成模型的历史、基础组件,以及ChatGPT等在单模态和多模态交互中的应用。文章还分析了模态间的交叉应用,并指出了当前的开放问题和未来挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

bdda0a3417abaf8c2c3af6d3629f9ee2.png

一句话总结

本综述全面回顾了生成模型的历史、基本模型组件、AIGC从单模态交互和多模态交互的最新进展,以及模态之间的交叉应用,最后讨论了AIGC中存在的开放问题和未来挑战。

摘要

最近,ChatGPT 与 DALL-E-2 和 Codex 一起受到了社会的广泛关注。因此,许多人对相关资源产生了兴趣,并试图揭开其出色表现背后的背景和秘密。

实际上,ChatGPT 和其他生成式人工智能 (GAI) 技术属于人工智能生成内容 (AIGC) 的范畴,涉及通过人工智能模型创建数字内容,例如图像、音乐和自然语言。

AIGC 的目标是使内容创建过程更加高效和易于访问,从而能够以更快的速度制作高质量的内容。

AIGC是通过从人类提供的指令中提取和理解意图信息,并根据其知识和意图信息生成内容来实现的。

近年来,大型模型在 AIGC 中变得越来越重要,因为它们提供了更好的意图提取,从而改进了生成结果。

随着数据的增长和模型的规模,模型可以学习的分布变得更加全面和接近现实,从而导致更真实和高质量的内容生成。

本调查全面回顾了生成模型的历史、基本组件、AIGC 从单模态交互和多模态交互的最新进展。我们从单峰性的角度介绍了文本和图像的生成任务和相关模型。我们从多模态的角度来介绍上述模态之间的交叉应用。最后,我们讨论了 AIGC 中存在的开放性问题和未来的挑战。

论文:A Comprehensive Survey of AI-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT
链接:https://arxiv.org/pdf/2303.04226v1.pdf
单位:CMU & Lehigh University

贡献

一共有三点贡献:

  • 据我们所知,我们是第一个为 AIGC 和 AI 增强生成过程提供正式定义和全面调研的人。

  • 我们回顾了AIGC 的历史和基础技术,并从单模态生成和多模态生成的角度对GAI 任务和模型的最新进展进行了全面分析。

  • 我们讨论了AIGC 面临的主要挑战和AIGC 未来的研究趋势。

总体看

图像生成中的 AIGC 示例。向 OpenAI DALL-E-2 模型给出文本指令,它根据指令生成两张图像:6c887994d8fbc24a3c01e982c8b70770.png

AIGC整体图。一般来说,GAI模型可以分为两类:单峰模型和多峰模型。单模态模型从与生成的内容模态相同的模态接收指令,而多模态模型接受跨模态指令并产生不同模态的结果:

7443460e8b842aeda0da4f6239b461e6.png

生成AI在CV、NLP和VL领域的历史:c00011a093542553962e7457d6afa433.png

单模态

预训练大语言模型的大体类型:

ed0019107bd573ee9d474a027d72b0a0.png

模型大小、训练速度在不同模型和计算设备的统计数据:

eebf41979d97ac5083f901b61c058612.png

InstructGPT的架构:

8a111bbd53174a25e56618c7de505a96.png

视觉分类的模型分类:

b999b5a74fa390c05e2941f2b558c588.png

视觉生成模型的基本框架:

1814c545a4e325af7baf7f7aec265690.png

多模态

两种视觉语言编码类型:778962d13ec985a1a97a5e03026e8f3f.png

两种解码类型:

dc973c82a88c1a3f1da2c65bff27e8ee.png

DALL-E-2模型结构:

764837516628bfe0b26dc0177efccafb.png

KG-文本的生成模型的一种方法DUALENC:

a2752b6e753fa2bb4e069b06999f1137.png

跨模态文本分子生成模型MoMu:

5c4944015f17126c2351a80c864c5858.png

当前研究领域、应用与相关公司的关系图,其中深蓝色圆圈代表研究领域,浅蓝色圆圈代表应用,绿色圆圈代表公司:

6971ddea81278a732d749ba9df59f24d.png

应用

生成AI模型应用:

ddf0b9cb65144369939355e8db6c9c75.png

AIGC的效率

prompt learning的通常流程:

351ce9f59f90ce7f54d02eb6b232dec5.png

进NLP群—>加入NLP交流群

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值