这篇论文提出了一种基于大型语言模型的语义文件系统(LSFS),通过自然语言提示实现了更智能和高效的文件管理。
论文: From Commands to Prompts: LLM-based Semantic File System for AIOS
链接: https://arxiv.org/pdf/2410.11843
研究背景
研究问题:这篇文章要解决的问题是如何利用大型语言模型(LLMs)来改进基于LLMs的智能应用和系统(如LLMs代理和代理操作系统AIOS)的文件管理系统。传统的文件系统依赖于精确的命令进行手动导航,这限制了系统的可用性。
研究难点:该问题的研究难点包括:用户需要记住复杂的文件夹层次结构和难以记忆的文件名;传统文件系统无法根据文件内容的语义信息进行组织和检索;现有的基于LLMs的文件管理研究大多局限于应用层面,缺乏通用的语义文件系统(LSFS)。
相关工作:该问题的研究相关工作有:Gifford等人提出的语义文件系统,Mahalingam等人提出的Sedar系统,Hua等人提出的基于语义的元数据管理系统,以及Lin等人将语义解析器集成到操作系统中的工作。
研究方法
这篇论文提出了基于LLMs的语义文件系统(LSFS),用于解决传统文件系统在智能应用和系统中的局限性。具体来说,
语义索引结构:LSFS引入了一种基于向量的语义索引结构,通过提取文件内容的语义特征并生成相应的嵌入向量,将语义信息融入文件操作中。
系统调用接口:设计了众多可重用的系统调用接口(syscalls),模拟传统文件系统函数,并实现了复杂文件功能的API。这些syscalls和APIs不仅实现了文件系统的基本功能,还提供了传统文件系统所没有的操作。
模板系统提示:将LLMs集成到复杂功能的API中,并引入模板系统提示,允许用户通过自然语言输入提取关键词,并将其直接映射为API或syscall的输入参数,简化用户与系统的交互。
安全性保障机制:设计了系统性的安全保障机制,如不可逆操作的安全检查和指令执行前的用户验证,以确保LSFS的安全性和准确性。
实验设计
数据收集:实验使用了不同LLM骨干模型(如Gemini-1.5-Flash、GPT-4o-mini、Qwen-2和Gemma-2)进行测试。
实验设计:实验设计包括对LSFS解析器准确性的评估、语义文件管理任务的性能分析(如语义文件检索和语义文件回滚)、以及非语义文件管理任务(如基于关键词的文件检索和文件共享)的性能分析。
样本选择:选择了30个不同的样本对每个API进行评估,覆盖了各种复杂的自然语言提示。
参数配置:在文件检索任务中,使用了不同的LLM骨干模型和文件数量进行对比;在文件共享任务中,评估了生成可分享链接的成功率和有效性。
结果与分析
LSFS解析器准确性:LSFS解析器在将自然语言提示转换为可执行的LSFS API调用方面表现出色,平均解析准确率达到90%。对于复杂的提示,如回滚API和检索总结API,准确率仍保持在85%以上。
语义文件管理任务:使用LSFS进行语义文件检索显著提高了检索的准确性和效率。例如,在使用Gemini-1.5-flash LLM时,检索准确性从75%提高到95%,检索时间从97.40秒减少到14.39秒。
文件共享任务:LSFS在所有实验中均实现了100%的链接生成成功率,展示了其在文件共享任务中的强大能力。相比之下,其他基于LLMs的方法在生成有效链接方面表现不佳。
总体结论
这篇论文提出了一种基于LLMs的语义文件系统(LSFS),通过将文件存储和管理基于其语义信息,显著提高了系统的理解和使用文件内容的能力。LSFS引入了一系列可重用的语义syscalls和自然语言到LSFS参数的映射框架,为未来的研究和开发提供了基础。未来的工作可以进一步探索LSFS在不同用户环境中的应用,并将语义文件管理集成到日常计算中,以简化用户操作并实现更智能、更用户友好的操作系统。
备注:昵称-学校/公司-方向/会议(eg.ACL),进入技术/投稿群
id:DLNLPer,记得备注呦