MEMO-Bench揭示现有多模态在负面情绪图片识别与生成上存在巨大缺陷

ee60dee9783e3f4f49ffbb39eb93f8ed.png

本文介绍了MEMO-Bench,这是一个针对文本到图像生成模型和多模态大型语言模型在情感分析方面能力的综合基准测试。MEMO-Bench包含7145张描绘六种不同情感的肖像画,并使用12个文本到图像模型生成。研究结果表明,现有的文本到图像模型在生成积极情绪方面比消极情绪更有效,而多模态大型语言模型在情感识别上虽然有一定效果,但尚未达到人类水平,尤其是在细粒度情感分析方面。MEMO-Bench将公开提供,以支持该领域的进一步研究。

论文: MEMO-Bench: A Multiple Benchmark for Text-to-Image and Multimodal Large Language Models on Human Emotion Analysis
链接: https://arxiv.org/pdf/2411.11235

研究背景

研究问题: 如何评估文本到图像(T2I)模型和多模态大型语言模型(MLLMs)在人类情感分析方面的能力。具体来说,研究探讨了T2I模型在情感生成方面的表现以及MLLMs在情感理解方面的表现。
研究难点: 如何有效地评估T2I模型和MLLMs在情感分析任务中的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值