TensorFlow实现简单MNIST

# ------------------载入MNIST数据集-----------------------
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist= input_data.read_data_sets("MNIST_data",one_hot=True)
sess = tf.InteractiveSession()  # 使用这个函数会自动将生成的对话注册为默认会话

然后进行初始化的定义,无论是哪一层都需要W和b所以将初始化函数先定义出来方便在之后的神经网络的搭建中使用,这其中比较重要的就是tf.truncated_normal()函数:

tf.truncated_normal(shape, mean,stddev): shape表示生成张量的维度,mean是均值,stddev是标准差。

这个函数产生正太分布,均值和标准差自己设定。这是一个截断的产生正太分布的函数,就是说产生正太分布的值如果与均值的差值大于两倍的标准差,那就重新生成。和一般的正太分布的产生随机数据比起来,这个函数产生的随机数与均值的差距不会超过两倍的标准差,但是一般的别的函数是可能的。

其他的tensorflow随机生成函数:

tf.random_normal:正太分布

tf.random_uniform:均匀分布

tf.random_gamma:Gamma分布

def weight_variable(shape):
    initial = tf.truncated_normal(shape,stddev=0.1)
    return tf.Variable(initial)
 def bias_variable(shape):
    initial = tf.constant(0.1,shape=shape)
    return tf.Variable(initial)

定义池化层和卷积层的函数将池化和卷积功能先写成函数方便使用。

# --------------------定义池化层和卷积层------------------
# 参数中x是输入,W是卷积的参数如[5,5,1,32]表示输入尺寸2×2通道为1卷积核个数为32
# 其中strides为[1, stride, stride, 1]
def conv2d(x,w):
    return tf.nn.conv2d(x,w,strides=[1,1,1,1],padding="SAME")

# 其中ksize表示池化窗口的大小其中的参数与stride一致
def max_pool_2x2(x):
    return tf.nn.max_pool(x,ksize=[1,2,2,1],strides=[1,2,2,1],padding='SAME')
如果输入的数据设置为常量,那么由于每轮迭代都要获取常量数据,导致TensorFlow的计算图过大,TensorFlow提供PlaceHolder机制用于提供输入数据,在定义时,数据类型是必须指定的。在进行计算时,所有定义的placeHolder都要通过feed_dict进行喂养(指定)feed_dict是一个字典。
# ------------------定义输入placeholder-------------------
# 将1D的图像转化为2D,先存储在placeholder中之后再转为2D
x = tf.placeholder(tf.float32,[None,784])
y_= tf.placeholder(tf.float32,[None,10])
# -1表示的是样本的个数不确定
x_image = tf.reshape(x,[-1,28,28,1])

总结一下TensorFlow中的[]:

1.卷积核使用的为[长,宽,通道,卷积核数量]

2.placeholder使用的为[样本容量,长,宽,通道]

3.池化窗口大小与卷积步长为[1,长,宽,1]

本次的CNN使用的是卷积->池化->卷积->池化->全链接->SoftMax的网络结构所以下面进行网络的搭建:

# ------------------定义第一个卷积层-----------------------
# 定义出W与b然后使用relu函数得出结果再进行池化
W_conv1 = weight_variable([5,5,1,32])
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image,W_conv1)+b_conv1)
h_pool1 = max_pool_2x2(h_conv1) 

第二个卷积层需要注意的是,进行卷积的是经过池化后的数据即h_pool1而不是h_conv1

# ------------------定义第二个卷积层-----------------------
W_conv2 = weight_variable([5,5,32,64])
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1,W_conv2)+b_conv2)
h_pool2 = max_pool_2x2(h_conv2)

# -----------------转为全链接层-------------------------
# 将第二个卷积层与一个新的全连接层相连全链接层的节点数为1024
w_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
# 将二维的参数转变为一维的参数
h_pool_flat = tf.reshape(h_pool2,[-1,7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool_flat,w_fc1)+b_fc1) 
对于结果先使用DropOut减少拟合度之后再进行softmax层的运算
# ----------------为减少过拟合使用Dropout---------------
keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob)

# ---------------将Dropout层与SoftMax层链接------------
W_fc2 = weight_variable([1024,10])
b_fc2 = bias_variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop,W_fc2)+b_fc2)
# ----------------定义损失函数和优化算法-----------------
# 其中reduction_indices表示缩减维度,0表示缩减行数,1表示缩减列数
# 由于在矩阵中每一行表示的是所有样本在同一节点的参数,缩减列数后将总的损失加为一个值再取平均值为本节点的损失平均值
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y_conv),reduction_indices=[1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)
# tf.equal比较程序输出与样本结果是否一样输出结果为一个布尔值
correct_prediction = tf.equal(tf.argmax(y_conv,1),tf.argmax(y_,1))
# 先将上述的布尔值转换为读点数值再求平均值
accracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))
# ------------------------进行训练-------------------------
tf.global_variables_initializer().run()
for i in range(1000):
    batch = mnist.train.next_batch(50)
    if i%100 == 0:
        train_accuracy= accracy.eval(feed_dict={x: batch[0],y_: batch[1],keep_prob:1.0})
        print("step %d,training accuracy %g"%(i,train_accuracy))
    train_step.run(feed_dict={x:batch[0],y_:batch[1],keep_prob:0.5})
print("test accuracy %g"% accracy.eval(feed_dict={x:mnist.test.images,y_:mnist.test.labels,keep_prob:1.0}))

张量:名字/维度/类型

变量:维度/类型

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值