Black And White
Time Limit: 2000/2000 MS (Java/Others) Memory Limit: 512000/512000 K (Java/Others)Total Submission(s): 3708 Accepted Submission(s): 1008
Special Judge
Problem Description
In mathematics, the four color theorem, or the four color map theorem, states that, given any separation of a plane into contiguous regions, producing a figure called a map, no more than four colors are required to color the regions of the map so that no two adjacent regions have the same color.
— Wikipedia, the free encyclopedia
In this problem, you have to solve the 4-color problem. Hey, I’m just joking.
You are asked to solve a similar problem:
Color an N × M chessboard with K colors numbered from 1 to K such that no two adjacent cells have the same color (two cells are adjacent if they share an edge). The i-th color should be used in exactly c i cells.
Matt hopes you can tell him a possible coloring.
— Wikipedia, the free encyclopedia
In this problem, you have to solve the 4-color problem. Hey, I’m just joking.
You are asked to solve a similar problem:
Color an N × M chessboard with K colors numbered from 1 to K such that no two adjacent cells have the same color (two cells are adjacent if they share an edge). The i-th color should be used in exactly c i cells.
Matt hopes you can tell him a possible coloring.
Input
The first line contains only one integer T (1 ≤ T ≤ 5000), which indicates the number of test cases.
For each test case, the first line contains three integers: N, M, K (0 < N, M ≤ 5, 0 < K ≤ N × M ).
The second line contains K integers c i (c i > 0), denoting the number of cells where the i-th color should be used.
It’s guaranteed that c 1 + c 2 + · · · + c K = N × M .
For each test case, the first line contains three integers: N, M, K (0 < N, M ≤ 5, 0 < K ≤ N × M ).
The second line contains K integers c i (c i > 0), denoting the number of cells where the i-th color should be used.
It’s guaranteed that c 1 + c 2 + · · · + c K = N × M .
Output
For each test case, the first line contains “Case #x:”, where x is the case number (starting from 1).
In the second line, output “NO” if there is no coloring satisfying the requirements. Otherwise, output “YES” in one line. Each of the following N lines contains M numbers seperated by single whitespace, denoting the color of the cells.
If there are multiple solutions, output any of them.
In the second line, output “NO” if there is no coloring satisfying the requirements. Otherwise, output “YES” in one line. Each of the following N lines contains M numbers seperated by single whitespace, denoting the color of the cells.
If there are multiple solutions, output any of them.
Sample Input
4 1 5 2 4 1 3 3 4 1 2 2 4 2 3 3 2 2 2 3 2 3 2 2 2
Sample Output
Case #1: NO Case #2: YES 4 3 4 2 1 2 4 3 4 Case #3: YES 1 2 3 2 3 1 Case #4: YES 1 2 2 3 3 1题目大意:给定一个n*m的棋盘,以及k种颜色,每种颜色的数量都是确定的。各种颜色的数量总和刚好的等于棋盘格的数目。要求每一个格子的颜色不能和其上下左右的格子的颜色相同。tip:1. 剩下的格子的数量+1必需是剩余最多种类颜色的两倍,否则必定会有相邻存在。
例如 3*3的空格中,最多的颜色数量不能超过5个.2.题目要求只输出一种结果,对应剪枝1。去掉会输出所有可能的结果。代码:#include<iostream> #include<cstring> using namespace std; int map[10][10]; int n,m,k; int flag; int color[30]; int cnt[30];//统计每个颜色的使用情况 //方向数组,上下左右四个方向 const int dire[4][2]={-1,0,1,0,0,-1,0,1}; void dfs(int x,int y) { //剪枝1: if(flag)return; //剪枝二 int ans=(n*m-(x-1)*m-y+2)/2; for(int i=1;i<=k;i++) { if(color[i]-cnt[i]>ans) return; } if(x==n+1) { flag=1; cout<<"YES"<<endl; for(int i=1;i<=n;i++) for(int j=1;j<=m;j++) { if(j==m)cout<<map[i][j]<<endl; else cout<<map[i][j]<<" "; } return; } //枚举k种颜色 for(int i=1;i<=k;i++) { //如果当前颜色没用使用完毕 if(cnt[i]<color[i]) { map[x][y]=i; int tag=1;//用于确定是否不同色 //枚举四个方向,保证上下左右不同颜色 for(int k=0;k<4;k++)//枚举四个方向 { int nx=dire[k][0]+x; int ny=dire[k][1]+y; //防止地图越界 if(nx<1||nx>n||ny<1||ny>m)continue; if(i==map[nx][ny]) { tag=0;break; } } //即不同色,颜色又没有用完,可以进行涂色 if(tag) { cnt[i]++; if(y<m)dfs(x,y+1); else dfs(x+1,1); cnt[i]--; map[x][y]=0; } else{ map[x][y]=0; } } } } int main() { int t; cin>>t; for(int z=1;z<=t;z++) { flag=0; memset(map,0,sizeof(map)); memset(cnt,0,sizeof(cnt)); cin>>n>>m>>k; for(int i=1;i<=k;i++) cin>>color[i]; cout<<"Case #"<<z<<":"<<endl; //从左上角开始搜索 dfs(1,1); if(!flag) cout<<"NO"<<endl; } return 0; }