PaddleClas笔记

超轻量图像分类方案PULC

在这里插入图片描述

方案主要包括 4 部分,分别是:PP-LCNet轻量级骨干网络SSLD预训练权重(EDA)数据增强策略集成SKL-UGI 知识蒸馏算法。此外,我们还采用了超参搜索的方法,高效优化训练中的超参数。

  1. 骨干网络PP-LCNet
    PULC 采用了轻量骨干网络 PP-LCNet,相比同精度竞品速度快 50%,您可以在PP-LCNet介绍查阅该骨干网络的详细介绍。
  2. SSLD预训练权重
    SSLD 是百度自研的半监督蒸馏算法,在 ImageNet 数据集上,模型精度可以提升 3-7 个点,您可以在 SSLD 介绍找到详细介绍。
    • 使用SSLD预训练权重,可以有效提升应用分类模型的精度(配置文件中设置pretrained:Trueuse_ssld:True
    • 训练中使用更小的分辨率,可以有效提升模型精度
    • 对学习率进行了优化
  3. EDA数据增强策略
    数据增强是视觉算法中常用的优化策略,可以对模型精度有明显提升。除了传统的 RandomCrop,RandomFlip 等方法之外,我们还应用了 RandomAugment 和 RandomErasing。您可以在数据增强介绍找到详细介绍。 由于这两种数据增强对图片的修改较大,使分类任务变难,在一些小数据集上可能会导致模型欠拟合,我们将提前设置好这两种方法启用的概率。
  4. SKL-UGI模型蒸馏
    模型蒸馏是一种可以有效提升小模型精度的方法,您可以在知识蒸馏介绍找到详细介绍。我们选择 ResNet101_vd 作为教师模型进行蒸馏。为了适应蒸馏过程,我们在此也对网络不同 stage 的学习率进行了调整。
  5. 总结
    PP-LCNet
    不同场景对比

数据准备

数据格式

PaddleClas 使用 txt 格式文件指定训练集和测试集,train.txttest.txt格式如下:

# 每一行采用"空格"分隔图像路径与标注
classifydata/img_detail/1.jpg 0
classifydata/img_invoice/10.jpg 1
classifydata/img_medicalDOC/20.jpg 2
classifydata/img_other/30.jpg 3
...

类别标签在./ppcls/utils/PULC_label_list/data_classification_label_list.txt,格式如下:

0 detail
1 invoice
2 medicalDOC
3 other

注意:在配置文件中配置图片路径img_root、标签路径cls_label_path、类别标签路径class_id_map_file

文件结构

./dataset_clas/路径下

data_classification
├── test_data
│   ├── classifydata
│   │   ├── img_detail
│   │   │   ├── 0.jpg
│   │   │   ├── 1.jpg
│   │   │   └── ...
│   │   ├── img_invoice
│   │   │   ├── 0.jpg
│   │   │   ├── 1.jpg
│   │   │   └── ...
│   │   └── ...
│   ├── class_error_230721...
│   ├── ...
│   └── test.txt
└── train_data...

模型训练

训练

export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
    --gpus="0,1,2,3" \
    tools/train.py \
        -c ./ppcls/configs/PULC/language_classification/PPLCNet_x1_0.yaml \
        -o Arch.class_num=4

评估

python3 tools/eval.py \
    -c ./ppcls/configs/PULC/language_classification/PPLCNet_x1_0.yaml \
    -o Global.pretrained_model="output/PPLCNet_x1_0/best_model" \
    -o Arch.class_num=4

预测

python3 tools/infer.py \
    -c ./ppcls/configs/PULC/language_classification/PPLCNet_x1_0.yaml \
    -o Global.pretrained_model="output/PPLCNet_x1_0/best_model" \
    -o Arch.class_num=4

通过增加字段 -o Infer.infer_imgs=xxx 对其他图片预测

模型压缩

SKL-UGI 知识蒸馏

SKL-UGI 知识蒸馏是 PaddleClas 提出的一种简单有效的知识蒸馏方法,关于该方法的介绍,可以参考SKL-UGI 知识蒸馏

教师模型训练

复用ppcls/configs/PULC/language_classification/PPLCNet/PPLCNet_x1_0.yaml中的超参数,训练教师模型,训练脚本如下:(大模型)

export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
    --gpus="0,1,2,3" \
    tools/train.py \
        -c ./ppcls/configs/PULC/language_classification/PPLCNet_x1_0.yaml \
        -o Arch.name=ResNet101_vd \
        -o Arch.class_num=4

当前教师模型最好的权重保存在output/ResNet101_vd/best_model.pdparams

蒸馏训练

配置文件ppcls/configs/PULC/language_classification/PPLCNet_x1_0_distillation.yaml提供了SKL-UGI知识蒸馏策略的配置。该配置将ResNet101_vd当作教师模型,PPLCNet_x1_0当作学生模型,使用新增的无标签数据。训练脚本如下:

export CUDA_VISIBLE_DEVICES=0,1,2,3
python3 -m paddle.distributed.launch \
    --gpus="0,1,2,3" \
    tools/train.py \
        -c ./ppcls/configs/PULC/language_classification/PPLCNet_x1_0_distillation.yaml \
        -o Arch.models.0.Teacher.pretrained=output/ResNet101_vd/best_model \
        -o Arch.class_num=4

当前模型最好的权重保存在output/DistillationModel/best_model_student.pdparams

超参搜索

在上述训练过程中,我们调节了学习率、数据增广方法开启概率、分阶段学习率倍数等参数。 这些参数在不同场景中最优值可能并不相同。我们提供了一个快速超参搜索的脚本,将超参调优的过程自动化。 这个脚本会遍历搜索值列表中的参数来替代默认配置中的参数,依次训练,最终选择精度最高的模型所对应的参数作为搜索结果。

基于默认配置搜索

配置文件 search.yaml 定义了有人/无人场景超参搜索的配置,使用如下命令即可完成超参数的搜索。

python3 tools/search_strategy.py -c ppcls/configs/PULC/person_exists/search.yaml

自定义搜索配置

您也可以根据训练结果或调参经验,修改超参搜索的配置。

修改 lrs 中的search_values字段,可以修改学习率搜索值列表;
修改 resolutions 中的 search_values 字段,可以修改分辨率的搜索值列表;
修改 ra_probs 中的 search_values 字段,可以修改 RandAugment 开启概率的搜索值列表;
修改 re_probs 中的 search_values 字段,可以修改 RnadomErasing 开启概率的搜索值列表;
修改 lr_mult_list 中的 search_values 字段,可以修改 lr_mult 搜索值列表;
修改 teacher 中的 search_values 字段,可以修改教师模型的搜索列表。

搜索完成后,会在 output/search_person_exists 中生成最终的结果,其中,除search_resoutput/search_person_exists 中目录为对应的每个搜索的超参数的结果的权重和训练日志文件,search_res 对应的是蒸馏后的结果,也就是最终的模型,该模型的权重保存在output/output_dir/search_person_exists/DistillationModel/best_model_student.pdparams

模型导出推理部署

导出

Paddle Inference 是飞桨的原生推理库, 作用于服务器端和云端,提供高性能的推理能力。相比于直接基于预训练模型进行预测,Paddle Inference可使用MKLDNN、CUDNN、TensorRT 进行预测加速,从而实现更优的推理性能。更多关于Paddle Inference推理引擎的介绍,可以参考Paddle Inference官网教程

python3 tools/export_model.py \
    -c ./ppcls/configs/PULC/language_classification/PPLCNet_x1_0.yaml \
    -o Global.pretrained_model=output/DistillationModel/best_model_student \
    -o Global.save_inference_dir=server_models/PPLCNet_x1_0_230721_data_cls

推理

  1. python预测
# 使用下面的命令使用 GPU 进行预测,如果希望使用 CPU 预测,可以在命令后面添加 -o Global.use_gpu=False
# 相关推理配置,可直接修改推理配置文件,或者在命令后添加 -o ...修改配置
python deploy/python/predict_cls.py -c deploy/configs/PULC/data_classification/inference_data_classification.yaml -o Global.infer_imgs="./images/PULC/language_classification/" Global.inference_model_dir="./server_models/PPLCNet_x1_0_230721_data_cls"
  1. C++预测
    PaddleClas 提供了基于 C++ 预测引擎推理的示例,您可以参考服务器端 C++ 预测来完成相应的推理部署。如果您使用的是 Windows 平台,可以参考基于 Visual Studio 2019 Community CMake 编译指南完成相应的预测库编译和模型预测工作。

部署

  1. 服务化部署
    Paddle Serving 提供高性能、灵活易用的工业级在线推理服务。Paddle Serving 支持 RESTful、gRPC、bRPC 等多种协议,提供多种异构硬件和多种操作系统环境下推理解决方案。更多关于Paddle Serving 的介绍,可以参考Paddle Serving 代码仓库
    PaddleClas 提供了基于 Paddle Serving 来完成模型服务化部署的示例,您可以参考模型服务化部署来完成相应的部署工作。
  2. 端侧部署
    Paddle Lite 是一个高性能、轻量级、灵活性强且易于扩展的深度学习推理框架,定位于支持包括移动端、嵌入式以及服务器端在内的多硬件平台。更多关于 Paddle Lite 的介绍,可以参考Paddle Lite 代码仓库
    PaddleClas 提供了基于 Paddle Lite 来完成模型端侧部署的示例,您可以参考端侧部署来完成相应的部署工作。
  3. Paddle2ONNX模型转换与预测
    Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式。通过 ONNX 可以完成将 Paddle 模型到多种推理引擎的部署,包括TensorRT/OpenVINO/MNN/TNN/NCNN,以及其它对 ONNX 开源格式进行支持的推理引擎或硬件。更多关于 Paddle2ONNX 的介绍,可以参考Paddle2ONNX 代码仓库
    PaddleClas 提供了基于 Paddle2ONNX 来完成 inference 模型转换 ONNX 模型并作推理预测的示例,您可以参考Paddle2ONNX 模型转换与预测来完成相应的部署工作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值