数学分析强化

本文探讨了实数的连续性定理、Cantor定理的证明方法,以及微积分中的导数计算、最值定理、复合函数和中值定理的应用。还涉及黎曼积分的可积性与反常积分的收敛性分析,以及Cauchy收敛原理的关联。
摘要由CSDN通过智能技术生成

1. 实系数连续性和完备性

cantor定理

利用归结原则(Heine定理)和连续性反推点列极限存在。若开区间(a,b)一致连续,取子列,子列极限为a,则利用一致连续的定义,得到f(xn)是基本数列,基本数列是收敛的,利用归结原则得到f(a+)极限存在。

事实上归结原则告诉我们,如果一个函数的左极限f(a+)存在,取趋向于边界点的数列,它的函数列的极限就等于左极限f(a+)。所以对于开区间极限存在的时候都应该要考虑用归结原则。

有限覆盖定理证明cantor定理、闭区间连续则有界。

重要证明:使用致密性定理证明实数集不可列。闭区间连续有界,最值定理,中间值定理。

其中最值定理包含了一个重要的技巧:在闭区间[a,b]连续,则有上确界H,对于H而言,总是在[a,b]上能找到点x,使得f(x)<H+ξ,这样取ξ=1/n,所得到的一组点列{xn}满足点列的极限为H,{xn}

有界则有收敛子列收敛于点x0,极限为H,根据归结原则,x趋向于x0处的极限为上确界H。

注意到:对于上确界而言,存在点列,点列极限为上确界。

2. 微分求出导函数

只需能写出f(x+\Deltax)=g(x)\Deltax + o(\Deltax),那个g(x)就是导数,如果是连续函数,可以写成f(x+\Deltax) = f(x) + o(1)。利用和差化积:sin(x+\Deltax)-sinx = 2cos(x+\Deltax/2)sin(\Deltax/2) = (cosx + o(1))(\Deltax + o(\Deltax))= cosx\Deltax +o(\Deltax)。所以sinx的导数是cosx。

莱布尼茨求导公式:通常考察对x^2sinx求导100次。

注意考察导函数极限的情况,如\lim_{x \to a}f^{'}(x)

连续和可导都是逐点的,即具体到某一点是否连续和可导。

3. 一元函数微分学

复合函数求导的条件和证明,复合函数的极限。

d(dx) = 0,将dx看成是f(x)=x的微分(书本只是说dx是个常数),df(x)=dx,因此d(df(x))看成是对常数1进行求导。

4.中值定理

复合函数的差使用一次中值定理,可以用来求极限。仅对最外层使用一层中值定理:f(g(x))-f(h(x))=f^{'}(\xi )(g(x)-h(x))

对反函数复合函数使用拉格朗日中值定理,如构造F(y)=f[g^{-1}(y)],来证明柯西中值定理。

这样的反函数需要对自变量y求导,因此F^{'}(\xi )=f^{'}[g^{-1}(\xi )][g^{-1}(\xi )]^{'}。注意和下面区分:

f(g(a))-f(h(b))=f^{'}(\xi )(g(a)-h(b))=f^{'}(\xi )f^{'}(\eta )(a-b)

凸函数的充要条件是二阶导大于等于0,但严格凸函数不能得到二阶导大于0,如y=x^4,x=0处二阶导为0.

5. 可积

黎曼可积则必有界,极限值I称为定积分。判断是否可积,通过振幅和趋于0,因为振幅和为0意味着达布大和和小和极限值相等,因此任意取划分中的点求黎曼和,极限就等于I。

取划分时,要么有界不连续的地方让区间无穷小(闭区间有界,处处有定义,有限个点不连续则可积),要么让函数值无穷小(闭区间连续则可积)。

8. 反常积分

x->∞,p>1, p级数收敛,p<1发散。x∈[0,1],p>1级数发散,p<1收敛。

收敛等价于满足Cauchy收敛原理

正向级数:比较判别法,和极限形式。Cauchy判别法和极限形式

  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

heine162

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值