1. 实系数连续性和完备性
cantor定理
利用归结原则(Heine定理)和连续性反推点列极限存在。若开区间(a,b)一致连续,取子列,子列极限为a,则利用一致连续的定义,得到f(xn)是基本数列,基本数列是收敛的,利用归结原则得到f(a+)极限存在。
事实上归结原则告诉我们,如果一个函数的左极限f(a+)存在,取趋向于边界点的数列,它的函数列的极限就等于左极限f(a+)。所以对于开区间极限存在的时候都应该要考虑用归结原则。
有限覆盖定理证明cantor定理、闭区间连续则有界。
重要证明:使用致密性定理证明实数集不可列。闭区间连续有界,最值定理,中间值定理。
其中最值定理包含了一个重要的技巧:在闭区间[a,b]连续,则有上确界H,对于H而言,总是在[a,b]上能找到点x,使得f(x)<H+ξ,这样取ξ=1/n,所得到的一组点列{xn}满足点列的极限为H,{xn}
有界则有收敛子列收敛于点x0,极限为H,根据归结原则,x趋向于x0处的极限为上确界H。
注意到:对于上确界而言,存在点列,点列极限为上确界。
2. 微分求出导函数
只需能写出f(x+x)=g(x)
x + o(
x),那个g(x)就是导数,如果是连续函数,可以写成f(x+
x) = f(x) + o(1)。利用和差化积:sin(x+
x)-sinx = 2cos(x+
x/2)sin(
x/2) = (cosx + o(1))(
x + o(
x))= cosx
x +o(
x)。所以sinx的导数是cosx。
莱布尼茨求导公式:通常考察对x^2sinx求导100次。
注意考察导函数极限的情况,如。
连续和可导都是逐点的,即具体到某一点是否连续和可导。
3. 一元函数微分学
复合函数求导的条件和证明,复合函数的极限。
d(dx) = 0,将dx看成是f(x)=x的微分(书本只是说dx是个常数),df(x)=dx,因此d(df(x))看成是对常数1进行求导。
4.中值定理
复合函数的差使用一次中值定理,可以用来求极限。仅对最外层使用一层中值定理:
对反函数复合函数使用拉格朗日中值定理,如构造,来证明柯西中值定理。
这样的反函数需要对自变量y求导,因此。注意和下面区分:
凸函数的充要条件是二阶导大于等于0,但严格凸函数不能得到二阶导大于0,如y=x^4,x=0处二阶导为0.
5. 可积
黎曼可积则必有界,极限值I称为定积分。判断是否可积,通过振幅和趋于0,因为振幅和为0意味着达布大和和小和极限值相等,因此任意取划分中的点求黎曼和,极限就等于I。
取划分时,要么有界不连续的地方让区间无穷小(闭区间有界,处处有定义,有限个点不连续则可积),要么让函数值无穷小(闭区间连续则可积)。
8. 反常积分
x->∞,p>1, p级数收敛,p<1发散。x∈[0,1],p>1级数发散,p<1收敛。
收敛等价于满足Cauchy收敛原理
正向级数:比较判别法,和极限形式。Cauchy判别法和极限形式
15. 傅里叶级数
给定一个周期函数,可以展开成傅里叶级数。如果函数是半周期,或者自己延拓成周期函数,可以延拓成奇函数或者偶函数,延拓成奇函数的话,余弦函数是偶函数,计算周期内的值时,得到的是0。此时只有正弦项,a0也为0,此时为正弦级数。