第2章 面试需要的基础知识
第3章 高质量的代码
第4章 解决面试题的思路
面试题27 :二叉树的镜像
面试题29 :顺时针打印矩阵
第5章 优化时间和空间效率
第6章 面试中的各项能力
第7章 两个面试案例
题目描述
输入一个矩阵,按照从外向里以顺时针的顺序依次打印出每一个数字,例如,如果输入如下4 X 4矩阵: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 则依次打印出数字1,2,3,4,8,12,16,15,14,13,9,5,6,7,11,10.
解题思路
解法一:
O(n)空间复杂度,O(n)时间复杂度
使用辅助空间,每次取矩阵第一行数,然后逆时针翻转剩余矩阵90度,继续取第一行数,循环直到矩阵为空。
这里借助辅助空间,省去了取数过程中边界控制的繁琐,每次只需取新矩阵的第一行,剩下的就是翻转矩阵。矩阵翻转也很简单,依次取出原矩阵的列作为新矩阵的行即可。
实战
class Solution:
# matrix类型为二维列表,需要返回列表
def printMatrix(self, matrix):
# write code here
def turnMatrix(mat):
"""逆时针翻转矩阵90度"""
if not mat:
return mat
new_mat = []
row, col = len(mat), len(mat[0]) - 1
for c in range(col, -1, -1):
new_col = []
for r in range(row):
new_col.append(mat[r][c])
new_mat.append(new_col)
return new_mat
if not matrix:
return matrix
results = []
while matrix:
results.extend(matrix[0]) # 取第一行
matrix = turnMatrix(matrix[1:]) # 剩余矩阵翻转
return results
解法二:
牛客网
O(1)空间复杂度,O(n)时间复杂度
解法一虽然写起来不易出错,但空间复杂度高。通过严格的控制边界,可以做到O(1)的空间复杂度。
简单来说,就是从外围取一圈树,然后不断地收缩矩阵的边界,非常的直观。
首先定义四个变量代表范围,up、down、left、right,步骤如下:
- 向右走存入整行的值,当存入后,该行再也不会被遍历,代表上边界的 up 加一,同时判断是否和代表下边界的 down 交错
- 向下走存入整列的值,当存入后,该列再也不会被遍历,代表右边界的 right 减一,同时判断是否和代表左边界的 left 交错
- 向左走存入整行的值,当存入后,该行再也不会被遍历,代表下边界的 down 减一,同时判断是否和代表上边界的 up 交错
- 向上走存入整列的值,当存入后,该列再也不会被遍历,代表左边界的 left 加一,同时判断是否和代表右边界的 right 交错
实战
注意取数时边界的控制,非常容易出错
class Solution:
# matrix类型为二维列表,需要返回列表
def printMatrix(self, matrix):
# write code here
if not matrix:
return matrix
up = 0
down = len(matrix) - 1
left = 0
right = len(matrix[0]) - 1
results = []
while True:
# 最上面一行
results.extend(matrix[up][left:right+1])
up += 1
if up > down:
break
# 最右边一列
for r in range(up, down+1):
results.append(matrix[r][right])
right -= 1
if right < left:
break
# 最下面一行
results.extend(matrix[down][left:right+1][::-1])
down -= 1
if down < up:
break
# 最左边一列
for r in range(down, up-1, -1):
results.append(matrix[r][left])
left += 1
if left > right:
break
return results