自然语言处理 八

  • 1. RNN。
  • 1. RNN。
  • 1.1RNN
    循环神经网络,Recurrent Neural Network。神经网络是一种节点定向连接成环的人工神经网络。这种网络的内部状态可以展示动态时序行为。不同于前馈神经网络的是,RNN可以利用它内部的记忆来处理任意时序的输入序列,这让它可以更容易处理如不分段的手写识别、语音识别等。
    参考:https://www.atyun.com/30234.html
    RNN的工作原理是:第一个词被转换成机器可读的向量。然后RNN逐个处理向量序列。
    å¨è¿éæå¥å¾çæè¿°

处理时,它将先前的隐藏状态传递给序列的下一步。隐藏状态充当神经网络的记忆。它保存着网络以前见过的数据信息

å¨è¿éæå¥å¾çæè¿°

 

让我们观察RNN的一个单元格,看看如何计算隐藏状态。首先,将输入和先前隐藏状态组合成一个向量。这个向量现在含有当前输入和先前输入的信息。向量经过tanh激活,输出新的隐藏状态,或网络的记忆。

å¨è¿éæå¥å¾çæè¿°

 

TANH激活

tanh激活用于帮助调节流经网络的值。tanh函数将值压缩在-1和1之间。

 

å¨è¿éæå¥å¾çæè¿°

 

当向量流经神经网络时,由于各种数学运算,它经历了许多变换。假设一个值连续乘以3。你可以看到某些值如何爆炸增长的,导致其他值看起来微不足道。

å¨è¿éæå¥å¾çæè¿°

tanh函数确保值在-1和1之间,从而调节神经网络的输出。你可以看到上面的相同值通过tanh函数保持界限之间。

å¨è¿éæå¥å¾çæè¿°

 

这是一个RNN。它内部的操作很少,但在适当的情况下(如短序列)工作得很好。RNN使用的计算资源比它的进化变体LSTM和GRU要少得多.

RNN 的关键点之一就是他们可以用来连接先前的信息到当前的任务上,例如使用过去的视频段来推测对当前段的理解。如果 RNN 可以做到这个,他们就变得非常有用。但是真的可以么?答案是,还有很多依赖因素。
有时候,我们仅仅需要知道先前的信息来执行当前的任务。例如,我们有一个语言模型用来基于先前的词来预测下一个词。如果我们试着预测 “the clouds are in the sky” 最后的词,我们并不需要任何其他的上下文 —— 因此下一个词很显然就应该是 sky。在这样的场景中,相关的信息和预测的词位置之间的间隔是非常小的,RNN 可以学会使用先前的信息。

但是同样会有一些更加复杂的场景。假设我们试着去预测“I grew up in France… I speak fluent French”最后的词。当前的信息建议下一个词可能是一种语言的名字,但是如果我们需要弄清楚是什么语言,我们是需要先前提到的离当前位置很远的 France 的上下文的。这说明相关信息和当前预测位置之间的间隔就肯定变得相当的大。
不幸的是,在这个间隔不断增大时,RNN 会丧失学习到连接如此远的信息的能力。

在理论上,RNN 绝对可以处理这样的 长期依赖 问题。人们可以仔细挑选参数来解决这类问题中的最初级形式,但在实践中,RNN 肯定不能够成功学习到这些知识。如果序列过长会导致优化时出现梯度消散的问题。
然而,幸运的是,LSTM 并没有这个问题!
1.2 双向RNN
Bidirectional RNN(双向RNN)假设当前t的输出不仅仅和之前的序列有关,并且 还与之后的序列有关,例如:预测一个语句中缺失的词语那么需要根据上下文进 行预测;Bidirectional RNN是一个相对简单的RNNs,由两个RNNs上下叠加在 一起组成。输出由这两个RNNs的隐藏层的状态决定。
å¨è¿éæå¥å¾çæè¿°

å¨è¿éæå¥å¾çæè¿°

 

1.3 LSTM 网络
Long Short Term Memory 网络—— 一般就叫做 LSTM ——是一种特殊的 RNN 类型,可以学习长期依赖信息。LSTM 由Hochreiter & Schmidhuber (1997)提出,并在近期被Alex Graves进行了改良和推广。在很多问题,LSTM 都取得相当巨大的成功,并得到了广泛的使用。

LSTM 通过刻意的设计来避免长期依赖问题。记住长期的信息在实践中是 LSTM 的默认行为,而非需要付出很大代价才能获得的能力!
所有 RNN 都具有一种重复神经网络模块的链式的形式。在标准的 RNN 中,这个重复的模块只有一个非常简单的结构,例如一个 tanh 层。
LSTM 同样是这样的结构,但是重复的模块拥有一个不同的结构。不同于 单一神经网络层,这里是有四个,以一种非常特殊的方式进行交互。LSTM是一种拥有三个“门”结构的特殊网络结构。
å¨è¿éæå¥å¾çæè¿°

 

LSTM 靠一些“门”的结构让信息有选择性地影响RNN中每个时刻的状态。所谓“门”的结构就是一个使用sigmod神经网络和一个按位做乘法的操作,这两个操作合在一起就是一个“门”结构。之所以该结构叫做门是因为使用sigmod作为激活函数的全连接神经网络层会输出一个0到1之间的值,描述当前输入有多少信息量可以通过这个结构,于是这个结构的功能就类似于一扇门,当门打开时(sigmod输出为1时),全部信息都可以通过;当门关上时(sigmod输出为0),任何信息都无法通过
å¨è¿éæå¥å¾çæè¿°

 

1.4、GRU的结构。

GRU可以看成是LSTM的变种,GRU把LSTM中的遗忘门和输入们用更新门来替代。 把cell state和隐状态ht进行合并,在计算当前时刻新信息的方法和LSTM有所不同。 下图是GRU更新ht的过程:

å¨è¿éæå¥å¾çæè¿°

 

å¨è¿éæå¥å¾çæè¿°

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值