YOLOv9改进策略【模型轻量化】| 使用 MoblieOne 模块,引入结构重参数化,提高模型检测效率

一、本文介绍

本文记录的是基于MobileOne的YOLOv9骨干网络改进方法研究。MobileOne的基础模块通过重参数化,降低了模型在推理过程中的参数量和计算量,降低推理延迟,提高内存访问效率。在将其替换YOLOv9的骨干网络后,实现模型轻量化。

模型参数量计算量推理速度
YOLOv9-c50.69M236.6GFLOPs32.1ms
Improved42.93M196.36GFLOPs28.3ms


MobileOne BlockMobileOne架构中的基本模块。

二、MobileOne Block原理

2.1. 结构原理

基于MobileNetV1:以MobileNetV1的块(3x3深度卷积后跟1x1点卷积)为基础。

引入可重参数化跳过连接和分支:引入了可重参数化的跳跃连接以及复制该结构的分支,同时还引入了多个的过参数化分支。

根据文档内容,MobileOne Block的结构在训练时和推理时有所不同,具体步骤如下:

2.2 MobileOne Block训练步骤

  • 输入特征图首先经过一个基于MobileNet - V1的基本块,包括3x3深度卷积和1x1点卷积。
  • 然后,引入可重参数化跳跃连接(reparameterizable skip connection),该连接带有批归一化(batchnorm)。
  • 同时,引入分支来复制上述结构,这些分支具有不同的超参数k(trivial over - parameterization factor),k的取值范围为1到5,通过实验来调整以获得最佳性能。
  • 此时,模块具有分支结构。

2.3 MobileOne Block推理步骤

  • 通过重参数化过程移除训练时的分支。
  • 卷积和批归一化操作被折叠到一个单一的卷积层中,具体来说,对于卷积层,其权重W和偏置b通过对各分支相应参数进行求和计算得到;对于跳过连接的批归一化,被折叠到一个具有1x1恒等核的卷积层中,并通过填充K - 1个零来实现。
  • 此时,模型具有简单的前馈结构,没有任何分支或跳跃连接,从而降低了内存访问成本。

综上所述,特征图在经过MobileOne Block时,经历了训练时的分支处理和推理时的重参数化以简化结构的步骤,以在保证性能的同时降低延迟和内存消耗。

在这里插入图片描述

2.4 优势

  • 提高准确性:通过引入可重参数化分支和琐碎的过参数化分支,提高性能,优化损失。
  • 降低内存访问成本:在推理时,MobileOne模型没有任何分支,这是通过重参数化过程实现的,从而降低了内存访问成本。
  • 有利于模型扩展:模型的这种结构和参数化方式使其能够更好地扩展模型参数,与其他多分支架构(如MobileNetV2、EfficientNets等)相比,能够在不产生显著延迟成本的情况下增加参数数量,从而使模型能够更好地泛化到其他计算机视觉任务。

论文:https://arxiv.org/abs/2206.04040
源码:https://github.com/apple/ml-mobileone

三、MobileOne的实现代码

MobileOne的实现代码如下:

import copy as copy2   
class SEBlock(nn.Module):
    """ Squeeze and Excite module.
        https://arxiv.org/pdf/1709.01507.pdf
    """

    def __init__(self, in_channels: int, rd_ratio: float = 0.0625) -> None:
        """ Construct a Squeeze and Excite Module.
        :param in_channels: Number of input channels.
        :param rd_ratio: Input channel reduction ratio.
        """
        super(SEBlock, self).__init__()
        self.reduce = nn.Conv2d(in_channels=in_channels,out_channels=int(in_channels * rd_ratio), kernel_size=1, stride=1, bias=True)
        self.expand = nn.Conv2d(in_channels=int(in_channels * rd_ratio),out_channels=in_channels, kernel_size=1, stride=1, bias=True)

    def forward(self, inputs: torch.Tensor) -> torch.Tensor:
        """ Apply forward pass. """
        b, c, h, w = inputs.size()
        x = F.avg_pool2d(inputs, kernel_size=[h, w])
        x = self.reduce(x)
        x = F.relu(x)
        x = self.expand(x)
        x = torch.sigmoid(x)
        x = x.view(-1, c, 1, 1)
        return inputs * x


class MobileOneBlock(nn.Module):
    """ MobileOne building block. https://arxiv.org/pdf/2206.04040.pdf
    """
    def __init__(self, in_channels: int, out_channels: int, kernel_size: int, stride: int = 1,
                 padding: int = 0, dilation: int = 1, groups: int = 1, use_se: bool = False, num_conv_branches: int = 1, inference_mode: bool = False) -> None:
        """ Construct a MobileOneBlock module.
        :param in_channels: Number of channels in the input.
        :param out_channels: Number of channels produced by the block.
        :param kernel_size: Size of the convolution kernel.
        :param stride: Stride size.
        :param padding: Zero-padding size.
        :param dilation: Kernel dilation factor.
        :param groups: Group number.
        :param inference_mode: If True, instantiates model in inference mode.
        :param use_se: Whether to use SE-ReLU activations.
        :param num_conv_branches: Number of linear conv branches.
        """
        super(MobileOneBlock, self).__init__()
        self.inference_mode = inference_mode
        self.groups = groups
        self.stride = stride
        self.kernel_size = kernel_size
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.num_conv_branches = num_conv_branches  # 4

        # Check if SE-ReLU is requested
        if use_se:
            self.se = SEBlock(out_channels)
        else:
            self.se = nn.Identity()
        self.activation = nn.ReLU()

        if inference_mode:
            self.reparam_conv = nn.Conv2d(in_channels=in_channels, out_channels=out_channels, kernel_size=kernel_size,stride=stride, padding=padding, dilation=dilation, groups=groups, bias=True)
        else:
            # Re-parameterizable skip connection
            self.rbr_skip = nn.BatchNorm2d(num_features=in_channels) if out_channels == in_channels and stride == 1 else None   # BN skip

            # Re-parameterizable conv branches
            rbr_conv = list()
            for _ in range(self.num_conv_branches):
                rbr_conv.append(self._conv_bn(kernel_size=kernel_size, padding=padding))
            self.rbr_conv = nn.ModuleList(rbr_conv)

            # Re-parameterizable scale branch
            self.rbr_scale = None
            if kernel_size > 1:
                self.rbr_scale = self._conv_bn(kernel_size=1, padding=0)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """ Apply forward pass. """
        # Inference mode forward pass.
        if self.inference_mode:
            return self.activation(self.se(self.reparam_conv(x)))

        # Multi-branched train-time forward pass.
        # Skip branch output
        identity_out = 0
        if self.rbr_skip is not None:
            identity_out = self.rbr_skip(x)

        # Scale branch output
        scale_out = 0
        if self.rbr_scale is not None:
            scale_out = self.rbr_scale(x)

        # Other branches
        out = scale_out + identity_out
        for ix in range(self.num_conv_branches):
            out += self.rbr_conv[ix](x)

        return self.activation(self.se(out))

    def reparameterize(self):
        """ Following works like `RepVGG: Making VGG-style ConvNets Great Again` -
        https://arxiv.org/pdf/2101.03697.pdf. We re-parameterize multi-branched
        architecture used at training time to obtain a plain CNN-like structure
        for inference.
        """
        if self.inference_mode:
            return
        kernel, bias = self._get_kernel_bias()
        self.reparam_conv = nn.Conv2d(in_channels=self.rbr_conv[0].conv.in_channels,
                                      out_channels=self.rbr_conv[0].conv.out_channels,
                                      kernel_size=self.rbr_conv[0].conv.kernel_size,
                                      stride=self.rbr_conv[0].conv.stride,
                                      padding=self.rbr_conv[0].conv.padding,
                                      dilation=self.rbr_conv[0].conv.dilation,
                                      groups=self.rbr_conv[0].conv.groups,
                                      bias=True)
        self.reparam_conv.weight.data = kernel
        self.reparam_conv.bias.data = bias

        # Delete un-used branches
        for para in self.parameters():
            para.detach_()
        self.__delattr__('rbr_conv')
        self.__delattr__('rbr_scale')
        if hasattr(self, 'rbr_skip'):
            self.__delattr__('rbr_skip')

        self.inference_mode = True

    def _get_kernel_bias(self) -> tuple([torch.Tensor, torch.Tensor]):
        """ Method to obtain re-parameterized kernel and bias.
        Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L83
        :return: Tuple of (kernel, bias) after fusing branches.
        """
        # get weights and bias of scale branch
        kernel_scale = 0
        bias_scale = 0
        if self.rbr_scale is not None:
            kernel_scale, bias_scale = self._fuse_bn_tensor(self.rbr_scale)
            # Pad scale branch kernel to match conv branch kernel size.
            pad = self.kernel_size // 2
            kernel_scale = torch.nn.functional.pad(kernel_scale, [pad, pad, pad, pad])

        # get weights and bias of skip branch
        kernel_identity = 0
        bias_identity = 0
        if self.rbr_skip is not None:
            kernel_identity, bias_identity = self._fuse_bn_tensor(self.rbr_skip)

        # get weights and bias of conv branches
        kernel_conv = 0
        bias_conv = 0
        for ix in range(self.num_conv_branches):
            _kernel, _bias = self._fuse_bn_tensor(self.rbr_conv[ix])
            kernel_conv += _kernel
            bias_conv += _bias

        kernel_final = kernel_conv + kernel_scale + kernel_identity
        bias_final = bias_conv + bias_scale + bias_identity
        return kernel_final, bias_final

    def _fuse_bn_tensor(self, branch) -> tuple([torch.Tensor, torch.Tensor]):
        """ Method to fuse batchnorm layer with preceeding conv layer.
        Reference: https://github.com/DingXiaoH/RepVGG/blob/main/repvgg.py#L95

        :param branch:
        :return: Tuple of (kernel, bias) after fusing batchnorm.
        """
        if isinstance(branch, nn.Sequential):
            kernel = branch.conv.weight
            running_mean = branch.bn.running_mean
            running_var = branch.bn.running_var
            gamma = branch.bn.weight
            beta = branch.bn.bias
            eps = branch.bn.eps
        else:
            assert isinstance(branch, nn.BatchNorm2d)
            if not hasattr(self, 'id_tensor'):
                input_dim = self.in_channels // self.groups
                kernel_value = torch.zeros((self.in_channels, input_dim, self.kernel_size, self.kernel_size),
                                           dtype=branch.weight.dtype, device=branch.weight.device)
                for i in range(self.in_channels):
                    kernel_value[i, i % input_dim,self.kernel_size // 2, self.kernel_size // 2] = 1
                self.id_tensor = kernel_value
            kernel = self.id_tensor
            running_mean = branch.running_mean
            running_var = branch.running_var
            gamma = branch.weight
            beta = branch.bias
            eps = branch.eps
        std = (running_var + eps).sqrt()
        t = (gamma / std).reshape(-1, 1, 1, 1)
        return kernel * t, beta - running_mean * gamma / std

    def _conv_bn(self, kernel_size: int, padding: int) -> nn.Sequential:
        """ Helper method to construct conv-batchnorm layers.
        :param kernel_size: Size of the convolution kernel.
        :param padding: Zero-padding size.
        :return: Conv-BN module.
        """
        mod_list = nn.Sequential()
        mod_list.add_module('conv', nn.Conv2d(in_channels=self.in_channels,out_channels=self.out_channels,
                                              kernel_size=kernel_size, stride=self.stride, padding=padding, groups=self.groups, bias=False))
        mod_list.add_module('bn', nn.BatchNorm2d(num_features=self.out_channels))
        return mod_list

class MobileOne(nn.Module):
    """ MobileOne Model  https://arxiv.org/pdf/2206.04040.pdf """
    def __init__(self,
                 in_channels, out_channels,
                 num_blocks_per_stage = 2, num_conv_branches: int = 1,
                 use_se: bool = False, num_se: int = 0,
                 inference_mode: bool = False, ) -> None:
        """ Construct MobileOne model.
        :param num_blocks_per_stage: List of number of blocks per stage.
        :param num_classes: Number of classes in the dataset.
        :param width_multipliers: List of width multiplier for blocks in a stage.
        :param inference_mode: If True, instantiates model in inference mode.
        :param use_se: Whether to use SE-ReLU activations.
        :param num_conv_branches: Number of linear conv branches.
        """
        super().__init__()
        self.inference_mode = inference_mode
        self.use_se = use_se
        self.num_conv_branches = num_conv_branches

        self.stage = self._make_stage(in_channels, out_channels, num_blocks_per_stage, num_se_blocks= num_se if use_se else 0)

    # planes指输出通道
    def _make_stage(self, in_channels, out_channels,  num_blocks: int, num_se_blocks: int) -> nn.Sequential:
        """ Build a stage of MobileOne model.

        :param planes: Number of output channels.
        :param num_blocks: Number of blocks in this stage.
        :param num_se_blocks: Number of SE blocks in this stage.
        :return: A stage of MobileOne model.
        """
        # Get strides for all layers
        strides = [2] + [1]*(num_blocks-1)
        blocks = []
        for ix, stride in enumerate(strides):  # 用于训练几个blocks
            use_se = False
            if num_se_blocks > num_blocks:
                raise ValueError("Number of SE blocks cannot " "exceed number of layers.")
            if ix >= (num_blocks - num_se_blocks):
                use_se = True

            # Depthwise conv
            blocks.append(MobileOneBlock(in_channels=in_channels, out_channels=in_channels,
                                         kernel_size=3, stride=stride, padding=1, groups=in_channels,
                                         inference_mode=self.inference_mode, use_se=use_se, num_conv_branches=self.num_conv_branches))
            # Pointwise conv
            blocks.append(MobileOneBlock(in_channels=in_channels, out_channels=out_channels,
                                         kernel_size=1, stride=1, padding=0, groups=1,
                                         inference_mode=self.inference_mode, use_se=use_se, num_conv_branches=self.num_conv_branches))
            in_channels = out_channels
        return nn.Sequential(*blocks)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """ Apply forward pass. """
        x = self.stage(x)
        return x

def reparameterize_model(model: torch.nn.Module) -> nn.Module:
    """ Method returns a model where a multi-branched structure
        used in training is re-parameterized into a single branch
        for inference.

    :param model: MobileOne model in train mode.
    :return: MobileOne model in inference mode.
    """
    # Avoid editing original graph
    model = copy2.deepcopy(model)
    for module in model.modules():
        if hasattr(module, 'reparameterize'):
            module.reparameterize()
    return model


四、添加步骤

4.1 修改common.py

此处需要修改的文件是models/common.py

common.py中定义了网络结构的通用模块,我们想要加入新的模块就只需要将模块代码放到这个文件内即可。

此时需要将上方实现的代码添加到common.py中。

在这里插入图片描述

注意❗:在4.2小节中的yolo.py文件中需要声明的模块名称为:MobileOne

4.2 修改yolo.py

此处需要修改的文件是models/yolo.py

1️⃣yolo.py用于函数调用,我们需要将common.py中定义的新的模块名添加到parse_model函数下即可。

MobileOne添加后如下:

在这里插入图片描述

2️⃣在yolo.pyBaseModel类的fuse函数下添加如下代码,以在推理时去除分支结构。

if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
    m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
    delattr(m, 'bn')  # remove batchnorm
    m.forward = m.forward_fuse  # update forward
if hasattr(m, 'reparameterize'):
    m.reparameterize()

在这里插入图片描述


五、yaml模型文件

5.1 模型改进⭐

在代码配置完成后,配置模型的YAML文件。

此处以models/detect/yolov9-c.yaml为例,在同目录下创建一个用于自己数据集训练的模型文件yolov9-c-mobileone.yaml

yolov9-c.yaml中的内容复制到yolov9-c-mobileone.yaml文件下,修改nc数量等于自己数据中目标的数量。

📌 模型的修改方法是将骨干网络中的所有RepNCSPELAN4模块替换成mobileone模块

结构如下:

# YOLOv9

# parameters
nc: 1  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
#activation: nn.LeakyReLU(0.1)
#activation: nn.ReLU()

# anchors
anchors: 3

# YOLOv9 backbone
backbone:
  [
   [-1, 1, Silence, []],  
   
   # conv down
   [-1, 1, Conv, [64, 3, 2]],  # 1-P1/2

   # conv down
   [-1, 1, MobileOne, [64, 2, 4, False, 0]],  # 2-P2/4

   # avg-conv down
   [-1, 1, MobileOne, [128, 8, 4, False, 0]],  # 4-P3/8 3

   # avg-conv down
   [-1, 1, MobileOne, [256, 10, 4, True, 1]],  # 6-P4/16 5

   # avg-conv down
   [-1, 1, MobileOne, [512, 1, 4, True, 1]],  # 8-P5/32 7
  ]

# YOLOv9 head
head:
  [
   # elan-spp block
   [-1, 1, SPPELAN, [512, 256]],  # 10

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 13

   # up-concat merge
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 3], 1, Concat, [1]],  # cat backbone P3

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [256, 256, 128, 1]],  # 16 (P3/8-small)

   # avg-conv-down merge
   [-1, 1, ADown, [256]],
   [[-1, 9], 1, Concat, [1]],  # cat head P4

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 19 (P4/16-medium)

   # avg-conv-down merge
   [-1, 1, ADown, [512]],
   [[-1, 6], 1, Concat, [1]],  # cat head P5

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 22 (P5/32-large)
   
   
   # multi-level reversible auxiliary branch
   
   # routing
   [3, 1, CBLinear, [[256]]], # 23
   [4, 1, CBLinear, [[256, 512]]], # 24
   [5, 1, CBLinear, [[256, 512, 512]]], # 25
   
   # conv down
   [0, 1, Conv, [64, 3, 2]],  # 26-P1/2

   # conv down
   [-1, 1, Conv, [128, 3, 2]],  # 27-P2/4

   # elan-1 block
   [-1, 1, RepNCSPELAN4, [256, 128, 64, 1]],  # 28

   # avg-conv down fuse
   [-1, 1, ADown, [256]],  # 29-P3/8
   [[19, 20, 21, -1], 1, CBFuse, [[0, 0, 0]]], # 30  

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 256, 128, 1]],  # 31

   # avg-conv down fuse
   [-1, 1, ADown, [512]],  # 32-P4/16
   [[20, 21, -1], 1, CBFuse, [[1, 1]]], # 33 

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 34

   # avg-conv down fuse
   [-1, 1, ADown, [512]],  # 35-P5/32
   [[21, -1], 1, CBFuse, [[2]]], # 36

   # elan-2 block
   [-1, 1, RepNCSPELAN4, [512, 512, 256, 1]],  # 37
   
   
   
   # detection head

   # detect
   [[27, 30, 33, 12, 15, 18], 1, DualDDetect, [nc]],  # DualDDetect(A3, A4, A5, P3, P4, P5)
  ]



六、成功运行结果

分别打印网络模型可以看到mobileone模块已经加入到模型中,并可以进行训练了。

yolov9-c-mobileone

                 from  n    params  module                                  arguments                     
  0                -1  1         0  models.common.Silence                   []                            
  1                -1  1      1856  models.common.Conv                      [3, 64, 3, 2]                 
  2                -1  1     40192  models.common.MobileOne                 [64, 64, 2, 4, False, 0]      
  3                -1  1    548416  models.common.MobileOne                 [64, 128, 8, 4, False, 0]     
  4                -1  1   2651296  models.common.MobileOne                 [128, 256, 10, 4, True, 1]    
  5                -1  1    582192  models.common.MobileOne                 [256, 512, 1, 4, True, 1]     
  6                -1  1    656896  models.common.SPPELAN                   [512, 512, 256]               
  7                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
  8           [-1, 4]  1         0  models.common.Concat                    [1]                           
  9                -1  1   2988544  models.common.RepNCSPELAN4              [768, 512, 512, 256, 1]       
 10                -1  1         0  torch.nn.modules.upsampling.Upsample    [None, 2, 'nearest']          
 11           [-1, 3]  1         0  models.common.Concat                    [1]                           
 12                -1  1    814336  models.common.RepNCSPELAN4              [640, 256, 256, 128, 1]       
 13                -1  1    164352  models.common.ADown                     [256, 256]                    
 14           [-1, 9]  1         0  models.common.Concat                    [1]                           
 15                -1  1   2988544  models.common.RepNCSPELAN4              [768, 512, 512, 256, 1]       
 16                -1  1    656384  models.common.ADown                     [512, 512]                    
 17           [-1, 6]  1         0  models.common.Concat                    [1]                           
 18                -1  1   3119616  models.common.RepNCSPELAN4              [1024, 512, 512, 256, 1]      
 19                 3  1     33024  models.common.CBLinear                  [128, [256]]                  
 20                 4  1    197376  models.common.CBLinear                  [256, [256, 512]]             
 21                 5  1    656640  models.common.CBLinear                  [512, [256, 512, 512]]        
 22                 0  1      1856  models.common.Conv                      [3, 64, 3, 2]                 
 23                -1  1     73984  models.common.Conv                      [64, 128, 3, 2]               
 24                -1  1    212864  models.common.RepNCSPELAN4              [128, 256, 128, 64, 1]        
 25                -1  1    164352  models.common.ADown                     [256, 256]                    
 26  [19, 20, 21, -1]  1         0  models.common.CBFuse                    [[0, 0, 0]]                   
 27                -1  1    847616  models.common.RepNCSPELAN4              [256, 512, 256, 128, 1]       
 28                -1  1    656384  models.common.ADown                     [512, 512]                    
 29      [20, 21, -1]  1         0  models.common.CBFuse                    [[1, 1]]                      
 30                -1  1   2857472  models.common.RepNCSPELAN4              [512, 512, 512, 256, 1]       
 31                -1  1    656384  models.common.ADown                     [512, 512]                    
 32          [21, -1]  1         0  models.common.CBFuse                    [[2]]                         
 33                -1  1   2857472  models.common.RepNCSPELAN4              [512, 512, 512, 256, 1]       
 34[27, 30, 33, 12, 15, 18]  1  21542822  DualDDetect                             [1, [512, 512, 512, 256, 512, 512]]
  • 17
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值