自然语言处理(十)

自然语言处理(十)--BERT
1. Transformer的原理。
1.1介绍
1.2.Transformer模型结构
1.3 输入层,位置向量
1.4 Attention模型
2. BERT的原理。
2.1 Bert原理
2.2 BERT模型总体结构
2.3 BERT模型输入
2.4 BERT模型预训练任务
2.4.1 Masked LM
2.4.2 Next Sentence Prediction
2.5 模型比较

1. Transformer的原理。
1.1介绍
谷歌在2017年发表了一篇论文名字教Attention Is All You Need,提出了一个只基于attention的结构来处理序列模型相关的问题,比如机器翻译。传统的神经机器翻译大都是利用RNN或者CNN来作为encoder-decoder的模型基础,而谷歌最新的只基于Attention的Transformer模型摒弃了固有的定式,并没有用任何CNN或者RNN的结构。该模型可以高度并行地工作,所以在提升翻译性能的同时训练速度也特别快。

1.2.Transformer模型结构
å¨è¿éæå¥å¾çæè¿°

模型分为编码器和解码器两个部分。

编码器由6个相同的层堆叠在一起,每一层又有两个支层。第一个支层是一个多头的自注意机制,第二个支层是一个简单的全连接前馈网络。在两个支层外面都添加了一个residual的连接,然后进行了layer nomalization的操作。模型所有的支层以及embedding层的输出维度都是 dmodel

解码器也是堆叠了六个相同的层。不过每层除了编码器中那两个支层,解码器还加入了第三个支层,如图中所示同样也用了residual以及layer normalization。具体的细节后面再讲。

1.3 输入层,位置向量
编码器和解码器的输入就是利用学习好的embeddings将tokens(一般应该是词或者字符)转化为d维向量。对解码器来说,利用线性变换以及softmax函数将解码的输出转化为一个预测下一个token的概率。
由于模型没有任何循环或者卷积,为了使用序列的顺序信息,需要将tokens的相对以及绝对位置信息注入到模型中去。论文在输入embeddings的基础上加了一个“位置编码”。位置编码和embeddings由同样的维度都是dmodel所以两者可以直接相加。有很多位置编码的选择,既有学习到的也有固定不变的。

1.4 Attention模型

å¨è¿éæå¥å¾çæè¿°

å¨è¿éæå¥å¾çæè¿°

本文结构中的Attention并不是简简单单将一个点乘的attention应用进去。作者发现先对queries,keys以及values进行h次不同的线性映射效果特别好。学习到的线性映射分别映射到dk,dk以及dv维。分别对每一个映射之后的得到的queries,keys以及values进行attention函数的并行操作,生成dv维的output值。具体结构和公式如下。
å¨è¿éæå¥å¾çæè¿°

å¨è¿éæå¥å¾çæè¿°

Transformer以三种不同的方式使用了多头attention。

在encoder-decoder的attention层,queries来自于之前的decoder层,而keys和values都来自于encoder的输出。这个类似于很多已经提出的seq2seq模型所使用的attention机制。
在encoder含有self-attention层。在一个self-attention层中,所有的keys,values以及queries都来自于同一个地方,本例中即encoder之前一层的的输出。
类似的,decoder中的self-attention层也是一样。不同的是在scaled点乘attention操作中加了一个mask的操作,这个操作是保证softmax操作之后不会将非法的values连到attention中。
层由两个支层,attention层就是其中一个,而attention之后的另一个支层就是一个前馈的网络。公式描述如下。

代码参考:https://github.com/Kyubyong/transformer

2. BERT的原理。
2.1 Bert原理
BERT模型的全称是Bidirectional Encoder Representations from Transformers,它是一种新型的语言模型。之所以说是一种新型的语言模型,是因为它通过联合调节所有层中的双向Transformer来训练预训练深度双向表示。

想深入了解BERT模型,首先应该理解语言模型。预训练的语言模型对于众多自然语言处理问题起到了重要作用,比如SQuAD问答任务、命名实体识别以及情感识别。目前将预训练的语言模型应用到NLP任务主要有两种策略,一种是基于特征的语言模型,如ELMo模型;另一种是基于微调的语言模型,如OpenAI GPT。这两类语言模型各有其优缺点,而BERT的出现,似乎融合了它们所有的优点,因此才可以在诸多后续特定任务上取得最优的效果。

2.2 BERT模型总体结构
BERT是一种基于微调的多层双向Transformer编码器,其中的Transformer与原始的Transformer是相同的,并且实现了两个版本的BERT模型,在两个版本中前馈大小都设置为4层:

BERTBASE:L=12,H=768,A=12,Total Parameters=110M

lBERTLARGE:L=24,H=1024,A=16,Total Parameters=340M

其中层数(即Transformer blocks块)表示为L,隐藏大小表示为H,自注意力的数量为A。

2.3 BERT模型输入

输入表示可以在一个词序列中表示单个文本句或一对文本(例如,[问题,答案])。对于给定的词,其输入表示是可以通过三部分Embedding求和组成。Embedding的可视化表示如下图所示:

å¨è¿éæå¥å¾çæè¿°

token Embeddings表示的是词向量,第一个单词是CLS标志,可以用于之后的分类任务,对于非分类任务,可以忽略词向量;

Segment Embeddings用来区别两种句子,因为预训练不只做语言模型还要做以两个句子为输入的分类任务;

Position Embeddings是通过模型学习得到的。

2.4 BERT模型预训练任务
BERT模型使用两个新的无监督预测任务对BERT进行预训练,分别是Masked LM和Next Sentence Prediction:

2.4.1 Masked LM
为了训练深度双向Transformer表示,采用了一种简单的方法:随机掩盖部分输入词,然后对那些被掩盖的词进行预测,此方法被称为“Masked LM”(MLM)。预训练的目标是构建语言模型,BERT模型采用的是bidirectional Transformer。那么为什么采用“bidirectional”的方式呢?因为在预训练语言模型来处理下游任务时,我们需要的不仅仅是某个词左侧的语言信息,还需要右侧的语言信息。

在训练的过程中,随机地掩盖每个序列中15%的token,并不是像word2vec中的cbow那样去对每一个词都进行预测。MLM从输入中随机地掩盖一些词,其目标是基于其上下文来预测被掩盖单词的原始词汇。与从左到右的语言模型预训练不同,MLM目标允许表示融合左右两侧的上下文,这使得可以预训练深度双向Transformer。Transformer编码器不知道它将被要求预测哪些单词,或者哪些已经被随机单词替换,因此它必须对每个输入词保持分布式的上下文表示。此外,由于随机替换在所有词中只发生1.5%,所以并不会影响模型对于语言的理解。

2.4.2 Next Sentence Prediction
很多句子级别的任务如自动问答(QA)和自然语言推理(NLI)都需要理解两个句子之间的关系,譬如上述Masked LM任务中,经过第一步的处理,15%的词汇被遮盖。那么在这一任务中我们需要随机将数据划分为等大小的两部分,一部分数据中的两个语句对是上下文连续的,另一部分数据中的两个语句对是上下文不连续的。然后让Transformer模型来识别这些语句对中,哪些语句对是连续的,哪些对子不连续。

2.5 模型比较
ELMo、GPT、BERT都是近几年提出的模型,在各自提出的时候都取得了不错的成绩。并且相互之间也是相辅相成的关系。

3个模型比较如下:
å¨è¿éæå¥å¾çæè¿°

再往前看,在NLP中有着举足轻重地位的模型和思想还有Word2vec、LSTM等。

Word2vec作为里程碑式的进步,对NLP的发展产生了巨大的影响,但Word2vec本身是一种浅层结构,而且其训练的词向量所“学习”到的语义信息受制于窗口大小,因此后续有学者提出利用可以获取长距离依赖的LSTM语言模型预训练词向量,而此种语言模型也有自身的缺陷,因为此种模型是根据句子的上文信息来预测下文的,或者根据下文来预测上文,直观上来说,我们理解语言都要考虑到左右两侧的上下文信息,但传统的LSTM模型只学习到了单向的信息。
å¨è¿éæå¥å¾çæè¿°

3. 参考 代码 https://github.com/google-research/bert

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值