Attention
一、基本的Attention原理
1.1 什么是Attention?
Attention模型的基本表述可以这样理解成(个人理解):当我们人在看一样东西的时候,我们时刻关注的一定是正在看的东西的某一个地方,换句话说,当我们目光移到别处时,注意力随着目光的移动野在转移,这意味着,当人们注意到某个目标或某个场景时,该目标内部以及该场景内每一处空间位置上的注意力分布是不一样的。上图形象化展示了人类在看到一副图像时是如何高效分配有限的注意力资源的,其中红色区域表明视觉系统更关注的目标,很明显对于上图所示的场景,人们会把注意力更多投入到人的脸部,文本的标题以及文章首句等位置。
这一点在如下情形下同样成立:当我们试图描述一件事情,我们当前时刻说到的单词和句子和正在描述的该事情的对应某个片段最先关,而其他部分随着描述的进行,相关性也在不断地改变。
从上述两种情形,可以看出,对于Attention的作用角度出发,我们就可以从两个角度来分类Attention种类:空间注意力和时间注意力,即Spatial Attention 和Temporal Attention。这种分类更多的是从应用层面上,而从Attention的作用方法上,可以将其分为Soft Attention和Hard Attention,这既我们所说的,Attention输出的向量分布是一种one-hot的独热分布还是soft的软分布,这直接影响对于上下文信息的选择作用。
1.2 为什么要加入Attention
计算能力的限制:当要记住很多“信息“,模型就要变得更复杂,然而目前计算能力依然是限制神经网络发展的瓶颈。
-优化算法的限制:虽然局部连接、权重共享以及pooling等优化操作可以让神经网络变得简单一些,有效缓解模型复杂度和表达能力之间的矛盾;但是,如循环神经网络中的长距离以来问题,信息“记忆”能力并不高。
1.3 Attention的原理
论文:Neural machine translation by jointly learning to align and translate
其网络结构如下:
自我感觉如下理解更容易一些:
将Source中的构成元素想象成是由一系列的<Key,Value>数据对构成,此时给定Target中的某个元素Query,通过计算Query和各个Key的相似性或者相关性,得到每个Key对应Value的权重系数,然后对Value进行加权求和,即得到了最终的Attention数值。所以本质上Attention机制是对Source中元素的Value值进行加权求和,而Query和Key用来计算对应Value的权重系数。
至于Attention机制的具体计算过程,如果对目前大多数方法进行抽象的话,可以将其归纳为两个过程:第一个过程是根据Query和Key计算权重系数,第二个过程根据权重系数对Value进行加权求和。而第一个过程又可以细分为两个阶段:第一个阶段根据Query和Key计算两者的相似性或者相关性;第二个阶段对第一阶段的原始分值进行归一化处理;这样,可以将Attention的计算过程抽象为如下图展示的三个阶段。
二、HAN(Hierarchical Attention Networks)的原理
论文:Hierarchical Attention Networks for Document Classification
网络结构:
HAN模型就是分层次的利用注意力机制来构建文本向量表示的方法。
文本由句子构成,句子由词构成,HAN模型对应这个结构分层的来构建文本向量表达;
文本中不同句子对文本的主旨影响程度不同,一个句子中不同的词语对句子主旨的影响程度也不同,因此HAN在词语层面和句子层面分别添加了注意力机制;
分层的注意力机制还有一个好处,可以直观的看出用这个模型构建文本表示时各个句子和单词的重要程度,增强了可解释性。
这篇论文里面使用双向GRU来构建句子表示和文本表示,以句子为例,得到循环神经网络中每个单元的输出后利用注意力机制整合得到句子向量表示(不使用attention时,一般会使用MAX或AVE),过程如下:
按照文中说法,先经过一层MLP得到隐层表示;然后与word level context vector 词语级别的context vector)做点积,各词语得到的结果再经过softmax函数后的结果就是各自的重要程度,即αt;最后加权和得到句子表示si 。文本向量的构建与此一致,之后经过全连接层和softmax分类。