决策树(Decision Tree)_海洋动物分类

本文介绍了如何利用决策树进行海洋生物的分类,通过《机器学习实战》中的案例,探讨信息熵在选择最佳特征分裂节点中的作用,以及如何生成、分类和保存决策树。文中展示了Python实现决策树的具体步骤和结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。

海洋生物数据
1 不浮出水面是否可以生存 是否有脚蹼 属于鱼类
2

3

4
5
6
图1:海洋生物判断决策树

  以《机器学习实战》第三章的 海洋生物识别为例,有 不浮出水面是否可以生存 和 是否有脚蹼 两个特征来判断该海洋生物是不是鱼类.而 决策树 就是像图1一样根据各节点(特征)来判断得到结果.

  但创建决策树时各节点否是未知的,任何一个特征好像都可以放在每个节点上,像图一的决策树 不浮出水面是否可以生存(No Surfacing) 和 是

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值