vgg16_mmcv图像分类算法模型

VGG16

论文

VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION

模型结构

VGG模型是2014年ILSVRC竞赛的第二名,第一名是GoogLeNet。但是VGG模型在多个迁移学习任务中的表现要优于GoogLeNet。而且,从图像中提取CNN特征,VGG模型是首选算法。

算法原理

VGG16共有16个层,是一个相当深的卷积神经网络。VGG各种级别的结构都采用了5段卷积,每一段有一个或多个卷积层。

环境配置

Docker(方法一)

git clone --recursive http://developer.hpccube.com/codes/modelzoo/vgg16_mmcv.git
docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:1.10.0-centos7.6-dtk-22.10.1-py37-latest
# <your IMAGE ID>用以上拉取的docker的镜像ID替换
docker run --shm-size 10g --network=host --name=vgg16 --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/vgg16_mmcv:/home/vgg16_mmcv -it <your IMAGE ID> bash

cd vgg16_mmcv/mmclassification-mmcv
pip install -r requirements.txt

Dockerfile(方法二)

cd vgg16_mmcv/docker
docker build --no-cache -t vgg16_mmcv:latest .
docker run --rm --shm-size 10g --network=host --name=vgg16 --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/../../vgg16_mmcv:/home/vgg16_mmcv -it <your IMAGE ID> bash
# 若遇到Dockerfile启动的方式安装环境需要长时间等待,可注释掉里面的pip安装,启动容器后再安装python库:pip install -r requirements.txt

Anaconda(方法三)

1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装: https://developer.hpccube.com/tool/

DTK驱动:dtk22.10.1
python:python3.7
torch:1.10.0
torchvision:0.10.0
mmcv:1.6.1
Tips:以上dtk驱动、python、torch等DCU相关工具版本需要严格一一对应

2、其它非特殊库参照requirements.txt安装

pip install -r requirements.txt

数据集

在本测试中可以使用ImageNet数据集。

下载ImageNet数据集:ImageNet

下载val数据:链接:百度网盘 请输入提取码 提取码:c3bc 替换ImageNet数据集中的val目录,处理后的数据结构如下:

data
    ├──imagenet
        ├── meta
            ├──val.txt
            ├──train.txt
            ...
        ├── train
        ├── val
  

训练

将训练数据解压到data目录下。

单机8卡

./vgg16.sh

result

img

精度

测试数据使用的是ImageNet数据集,使用的加速卡是DCU Z100L。

卡数精度
8top1:0.7162;top5:0.9049

应用场景

算法类别

图像分类

热点行业

制造,能源,交通,网安

源码仓库及问题反馈

ModelZoo / VGG16_mmcv · GitLab

参考资料

https://github.com/open-mmlab/mmpretrain

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术瘾君子1573

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值