yolo11_pytorch在CPU上提速明显,支持目标检测、实例分割、图像分类、姿态估计

YOLO11在CPU上提速明显,支持目标检测、实例分割、图像分类、姿态估计。

论文

未发表

模型结构

YOLO11与YOLOv8一致提供了五个不同尺度大小的网络,延续了YOLOv10无NMS的训练策略,引入了C3k2和C2PSA两个全新模块。

算法原理

YOLO11将图片数据送入模型后,沿用yolo系列的通用方法,依次通过backbone、neck提取特征,然后经过head预测出检测框。

环境配置

mv yolo11_pytorch YOLO11 # 去框架名后缀

Docker(方法一)

docker pull image.sourcefind.cn:5000/dcu/admin/base/pytorch:2.3.0-ubuntu22.04-dtk24.04.2-py3.10
# <your IMAGE ID>为以上拉取的docker的镜像ID替换,本镜像为:83714c19d308
docker run -it --shm-size=64G -v $PWD/YOLO11:/home/YOLO11 -v /opt/hyhal:/opt/hyhal:ro --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video --name yolo11 <your IMAGE ID> bash
cd /home/YOLO11
pip install -r requirements.txt # requirements.txt

Dockerfile(方法二)

cd cd /home/YOLO11/docker
docker build --no-cache -t yolo11:latest .
docker run --shm-size=64G --name yolo11 -v /opt/hyhal:/opt/hyhal:ro --privileged=true --device=/dev/kfd --device=/dev/dri/ --group-add video -v $PWD/../../YOLO11:/home/YOLO11 -it yolo11 bash
# 若遇到Dockerfile启动的方式安装环境需要长时间等待,可注释掉里面的pip安装,启动容器后再安装python库:pip install -r requirements.txt。

Anaconda(方法三)

1、关于本项目DCU显卡所需的特殊深度学习库可从光合开发者社区下载安装:

DTK驱动:dtk24.04.2
python:python3.10
torch:2.3.0
torchvision:0.18.1
torchaudio:2.1.2
triton:2.1.0
flash-attn:2.0.4
deepspeed:0.14.2
apex:1.3.0
xformers:0.0.25

Tips:以上dtk驱动、python、torch等DCU相关工具版本需要严格一一对应。

2、其它非特殊库参照requirements.txt安装

cd /home/YOLO11
pip install -r requirements.txt # requirements.txt

数据集

coco2017coco2017labels-segmentscoco8

对于coco8的使用:运行训练命令时会自动从官网下载并自动解压,若因网络问题未自动下载,放到/home/datasets/下即可,运行训练命令时会自动解压。

对于coco2017的使用:首先解压下载的coco2017中的train2017.zipval2017.zip,放置到新建文件夹coco/images/下,然后解压coco2017labels-segments.zip,文件会自动放到coco目录下面。

mkdir coco/images

cd coco2017
unzip train2017.zip
mv train2017 ../coco/images/
unzip val2017.zip
mv val2017 ../coco/images/

cd ..
unzip coco2017labels-segments.zip

本项目已提供迷你数据集coco8用于快速试用,完整训练的目录结构如下:

/home/datasets
    ├── datasets/coco8
        ├── images
            ├── train
                ├── xxx.jpg
                ...
            └── val
                ├── xxx.jpg
                ...
        └── labels
            ├── train
                ├── xxx.txt
                ...
            └── val
                ├── xxx.txt
                ...
    └── datasets/coco
        ├── train2017.txt
        ├── val2017.txt
        ├── test-dev2017.txt
        ├── images
            ├── train2017
                ├── xxx.jpg
                ...
            └── val2017
                ├── xxx.jpg
                ...
        └── labels
            ├── train2017
                ├── xxx.txt
                ...
            └── val2017
                ├── xxx.txt
                ...

更多资料可参考源项目的README_origin

训练

运行训练命令时若未自动下载字体文件,使用以下命令放置即可:

cp Arial.ttf /root/.config/Ultralytics/Arial.ttf

若遇到部分环境需要到YOLO11目录中读取数据集,使用以下命令放置即可:

cd /home/YOLO11
mv ../datasets ./
cd /home/YOLO11
python train_infer_coco.py # 若希望训练coco2017,则使用此config:data="coco.yaml"。

推理

yolo predict model=yolo11s.pt source='https://ultralytics.com/images/bus.jpg'

更多资料可参考源项目的README_origin

result

输入:

图片:bus.jpg

输出:

640x480 4 persons, 1 bus

精度

DCU与GPU精度一致,推理框架:pytorch。

应用场景

算法类别

目标检测

热点应用行业

制造,电商,医疗,能源,教育

预训练权重

源码仓库及问题反馈

参考资料

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

技术瘾君子1573

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值