matplotlib教程之——自定义配置文件和绘图风格(rcParams和style)

一、什么是rcParams?

我们在使用matplotliblib画图的时候经常会遇见中文或者是负号无法显示的情况,我们会添加下面两句话:

from matplotlib.pylab import mpl

mpl.rcParams['font.sans-serif'] = ['SimHei']

mpl.rcParams['axes.unicode_minus']=False

我们都只知道这么做,很少去想一下这到底是为什么?

实际上,pylot使用rc配置文件来自定义图形的各种默认属性,称之为rc配置rc参数。通过rc参数可以修改默认的属性,包括窗体大小、每英寸的点数、线条宽度、颜色、样式、坐标轴、坐标和网络属性、文本、字体等。

在matplotlib模块载入的时候会调用rc_params,并把得到的配置字典保存到rcParams变量中:

1、配置文件在哪里?

既然是配置文件,它也是一个文件,这个文件存在于matplotlib的安装文件夹之下,比如我的在以下文件夹:

D:\ProgramData\Anaconda3\Lib\site-packages\matplotlib\mpl-data  文件名称是 matplotlibrc   这是windows系统的,Unix和Linux会不一样。

我们可以通过实用文本文件打开这个文件进行查看,发现,里面的内容都是“ 键-值 ”的形式,这也就是为什么我们可以通过

mpl.rcParams['font.sans-serif'] = ['SimHei']  这种形式加以配置了。

2、如何查看默认配置信息——可以通过matplotlib的相关属性以及方法家已操作

(1)查看默认配置的方法

        方法一:直接打开matplotlibrc文件

        方式二:print(matplotlib.rc_params())

                      print(matplotlib.rcParamsDefault)   

                      print(matplotlib.rcParams)                               #这三者是等价的

(2)设置相关的配置

       # 修改方式一

                      mpl.rcParams['lines.linewidth'] = 2

                      mpl.rcParams['lines.color'] = 'r'

       # 修改方式二

                      mpl.rc('lines', linewidth=4, color='g')

        # 恢复默认参数

                      mpl.rcdefaults()

        #从已有的文件更新

                      mpl.cr_file()

3、示例

import matplotlib
import matplotlib.pyplot as plt
import numpy as np

x=np.linspace(0,2*np.pi)
y=np.sin(x)

matplotlib.rcParams['lines.color']='blue'  #更改划线颜色的默认设置

plt.plot(x,y,label='sin',linewidth=5)
plt.legend()
plt.show()

运行结果为:

二、什么是style

使用matplotlib画图的时候,除了我们可以针对每一个样式自己定义以外,我们还可以使用系统定义好的样式快速配置。

style是pyplot的一个子模块,方便进行风格转换,它里面定义了很多预设风格。本质上来说,每一个预设的风格style都是一个style文件,它是以  .mplstyle   为后缀的文件。我们依然可以查看,比如我的电脑在一下文件夹下,有很多的  .mplstyle文件:

D:\ProgramData\Anaconda3\Lib\site-packages\matplotlib\mpl-data\stylelib,里面的部分文件如下所示:

每一个文件名对应于一种预设风格。

我们可以打开一个文件,里面预设的风格属性也是通过“  键-值  ”对的形式表示的。

1、预设风格的查看

         方式一:直接查看相应的文件夹即可

         方式二:print(plt.style.available)   #会打印出所有的预设风格的名称

2、预设风格的使用——就添加一句话即可

                       x=np.linspace(0,2*np.pi)

                       y=np.sin(x)

                       plt.style.use('ggplot')                         ##使用 ggplot  的绘图风格

                       plt.plot(x,y,label='sin',linewidth=5)

                       plt.legend()

                       plt.show()

3、自定义画图风格style

      比如我在上面所述的文件夹下自定义一个 myownstyle.mplstyle 文件,里面的内容如下所示:

          lines.color: green
          lines.linewidth:8
          patch.edgecolor: red

          text.color: white

          axes.facecolor: yellow
          axes.edgecolor:black

   然后调用如下:

      

import matplotlib
import matplotlib.pyplot as plt
import numpy as np


x=np.linspace(0,2*np.pi)
y=np.sin(x)

f=plt.figure()
plt.style.use('myownstyle')    ##使用自定义的样式文件
plt.plot(x,y,label='sin',linewidth=5)
plt.legend()

plt.show()

运行结果为:

4、补充

除此之外,我们还可以使用with代码块。在代码块内部画的图是制定的风格,而在代码块外部画的图却不用这种风格,入戏所示:

      

x=np.linspace(0,2*np.pi)
y=np.sin(x)

f=plt.figure()
with plt.style.context('myownstyle'):   #将use换成context
    pass
plt.plot(x,y,label='sin')
plt.legend()

plt.show()

运行结果为:

由此可见,因为图是在with代码块之外画的,所以并没有使用到我的样式 myownstyle。

### 如何在 Matplotlib 中设置字体 在 Matplotlib 的 `plt` 模块中,可以通过多种方式来设置生成图片中的字体样式。以下是几种常见的方法: #### 使用全局置字典 rcParams 来统一设置字体 通过修改 Matplotlib 的全局参数字典 `rcParams` 可以实现整个绘图环境下的字体统一样式设定。例如,可以指定默认字体名称以及其属性。 ```python import matplotlib.pyplot as plt from matplotlib import rcParams # 设置全局字体为 SimHei (黑体),并启用显示负号的功能 rcParams['font.family'] = 'SimHei' rcParams['axes.unicode_minus'] = False ``` 上述代码片段设置了全局使用的字体为 “SimHei”,即中文环境下常用的黑体[^1]。 #### 动态加载本地 TTF 字体文件到 Matplotlib 并应用 如果需要使用自定义的 TrueType (.ttf) 文件作为图表上的字体,则可通过 `font_manager.FontProperties` 类动态加载特定字体文件,并将其应用于具体文本对象上。 ```python from matplotlib.font_manager import FontProperties custom_font = FontProperties(fname='/path/to/your/custom-font.ttf') # 替换为你实际路径 plt.text(0.5, 0.5, u"你好", fontproperties=custom_font, size=50) ``` 这里展示了如何利用绝对路径指向外部 .ttf 文件创建一个新的字体实例 custom_font ,随后该字体被用于绘制字符串 "你好"[^2]。 #### 针对单个元素单独调整字体特性 对于某些特殊需求场景下可能只需要更改个别部分而非整体风格时,可以直接针对这些组件传递额外的关键字参数来自由定制它们的表现形式。比如下面的例子演示了怎样分别控制标题、X 轴标签 Y 轴标签各自的字体大小与加粗程度等细节特征。 ```python fig, ax = plt.subplots() ax.set_title('Sample Plot', fontsize=24, fontweight='bold') ax.set_xlabel('X-Axis Label', fontsize=18, color='blue') ax.set_ylabel('Y-Axis Label', fontsize=16, style='italic') for label in ax.get_xticklabels() + ax.get_yticklabels(): label.set_fontsize(12) label.set_color('red') ``` 在这个例子中,我们不仅改变了各个轴名的颜色及尺寸,还特别强调了一下刻度标记的文字颜色设为了红色以便更醒目一些[^2]。 #### 总结 以上介绍了三种主要途径去管理 Matplotlib 输出图像里的字体呈现效果——从最简单的全盘覆盖式的解决方案直到精细至每一个独立组成部分都可自由操控的程度不等。开发者可以根据项目实际情况灵活选用最适合自己的策略组合起来完成最终目标。
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值