使用espnetv2 训练分割任务

本文档介绍了如何使用espnetv2库来训练图像分割任务。首先,详细说明了数据集的准备过程,包括将标注数据放入VOC格式的文件夹中,并生成train_aug.txt和val.txt文件。接着,提到了训练代码的修改步骤,特别是指出在不使用COCO数据集增强的情况下,训练脚本不需要添加--coco-path选项。
摘要由CSDN通过智能技术生成

EdegNets这个项目中有很多值得我们学习的亮点:

例如训练逻辑:先小分辨率,然后大分辨率
transform等
学习率控制策略:Hybird等
网络架构比较轻便

现在我们需要使用EdgeNets 訓練二分类分割任务:

原项目:https://github.com/sacmehta/EdgeNets/blob/master/README_Segmentation.md

根据原git项目,需要作如下修改,才能跑通:

一: 数据集准备:
只需要将标注好的数据:图片和标注图片分别放入到VOC风格文件下的
JPEGImages/ SegmentationClassAug/中即可,
然后仿照voc数据分别生成train_aug.txt 和val.txt
参考脚本:

    # coding:utf-8
	from imutils import paths
		jpgPath= ""
		maskPath=""
		jpgs=sorted(list(paths.list_images(jpgPath)))
		masks=sorted(list(paths.list_images(maskPath)))
		with open("train_aug.txt", 'a') as f:
		    for idx in range(len(masks)):
		        w= jpgs[idx]+"  " + masks[idx]+
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值