EdegNets这个项目中有很多值得我们学习的亮点:
例如训练逻辑:先小分辨率,然后大分辨率
transform等
学习率控制策略:Hybird等
网络架构比较轻便
现在我们需要使用EdgeNets 訓練二分类分割任务:
原项目:https://github.com/sacmehta/EdgeNets/blob/master/README_Segmentation.md
根据原git项目,需要作如下修改,才能跑通:
一: 数据集准备:
只需要将标注好的数据:图片和标注图片分别放入到VOC风格文件下的
JPEGImages/ SegmentationClassAug/中即可,
然后仿照voc数据分别生成train_aug.txt 和val.txt
参考脚本:
# coding:utf-8
from imutils import paths
jpgPath= ""
maskPath=""
jpgs=sorted(list(paths.list_images(jpgPath)))
masks=sorted(list(paths.list_images(maskPath)))
with open("train_aug.txt", 'a') as f:
for idx in range(len(masks)):
w= jpgs[idx]+" " + masks[idx]+