
caffe
文章平均质量分 57
Cche1
即使是一个智慧的地狱,也比一个愚昧的天堂好些。
展开
-
caffe学习系列:训练自己的图片集(超详细教程)
学习的caffe的目的,不是简单的做几个练习,而是最终落实到自己的项目或科研中去。因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试的整个流程。一、数据的准备 有条件的同学,可以去ImageNet的官网点击打开链接,下载ImageNet图片来训练。但是我没有下载,因为我注册过程中一直出现bug。 我重新找了500张图片来代替,分为大巴车、恐龙、大象、鲜花和马原创 2017-01-06 16:59:05 · 66253 阅读 · 66 评论 -
MATLAB :deeplearnToolbox-master
转自作者:点击打开链接MATLAB实现CNN一般会用到deepLearnToolbox-master。但是根据Git上面的说明,现在已经停止更新了,而且有很多功能也不太能够支持,具体的请大家自习看一看git中的README。deepLearnToolbox-master是一个深度学习matlab包,里面含有很多机器学习算法,如卷积神经网络CNN,深度信念网络DBN,自动编码Auto转载 2017-07-05 09:56:25 · 8023 阅读 · 1 评论 -
caffe:使用draw_net.py绘制网络架构
在caffe中可以使用draw_net.py轻松地绘制卷积神经网络(CNN,Convolutional Neural Networks)的架构图。这个工具对于我们理解、学习甚至查错都有很大的帮助。1、draw_net.py的使用方法如下:usage: draw_net.py [-h] [--rankdir RANKDIR] input_net_pr原创 2017-07-15 11:15:20 · 1236 阅读 · 0 评论 -
Ubuntu14.04+cuda7.5+caffe+cudnn安装
一、版本linux系统:Ubuntu 14.04 (64位)显卡:Nvidia K20ccuda: cuda_7.5.18_linux.runcudnn: cudnn-7.0-linux-x64-v4.0-rc二、下载Ubuntu 14.04下载地址:http://www.ubuntu.com/download/desktop (64bit)原创 2017-07-20 11:40:57 · 676 阅读 · 0 评论 -
FaceDataSet数据集
参见博客:http://blog.csdn.net/chenriwei2/article/details/50631212原创 2017-07-17 12:27:31 · 820 阅读 · 0 评论 -
matlab在图片上分块(在图片上画网格)
转载▼ p = imread('g.jpg'); %读取图像I=imresize(p,[256,256]); %将图像的尺寸调整为【256*256】rs = size(I, 1); cs = size(I, 2);%取图像的行列数sz = 4;%设置块的大小ch = sz; cw = sz;原创 2017-07-17 16:57:36 · 7831 阅读 · 0 评论 -
caffe: window8+cuda7.5+cudnn7.5
1 安装CUDA1.1版本选择至于具体安装哪个版本,根据自己的机器型号去NVIDIA官网查看,本文分享一个7.0版本的网盘地址:http://pan.baidu.com/s/1i5AmAZb1.2cudnn下载选择对应版本下载,由于本文安装的是cuda7.5,所以下载的cudnn是https://developer.nvidia.com/rdp/cudnn-do原创 2017-07-18 15:09:55 · 1124 阅读 · 0 评论 -
caffemodel进行批量测试
1 批量对图片进行分类 在对单个图片进行分类就想知道如何批量对图片进行分类。自己搜索了一些资料,发现需要调用python,使用python文件实现目的。 下面是批量对图片进行分类的代码(自己修改):#coding=utf-8#作用:可以用来批处理图片进行分类import osimport caffeimport numpy as nproot='C原创 2017-07-18 16:07:19 · 3196 阅读 · 0 评论 -
caffe:Model-Zoo
链接:https://github.com/BVLC/caffe/wiki/Model-Zoo原创 2017-07-22 17:37:46 · 1308 阅读 · 0 评论 -
caffe: 使用.solverstate文件可以继续之前的训练
我们在使用caffe训练过程中会生成.caffemodel和.solverstate文件,一个是模型文件,一个是中间状态文件(生成多少个取决于你自己设定的snapshot)。当训练过程中断,你想继续运行数据学习,此时只需要调用.solverstate文件即可。使用方式代码,我使用的是.sh直接运行,配置和官方给的文件train_caffenet.sh差不多,稍微添加点内容就可以了。原创 2017-07-10 17:47:51 · 2141 阅读 · 0 评论 -
什么是caffe?
Caffe的全称应该是Convolutional Architecture for Fast Feature Embedding,它是一个清晰、高效的深度学习框架,它是开源的,核心语言是C++,它支持命令行、Python和Matlab接口,它既可以在CPU上运行也可以在GPU上运行。它的license是BSD 2-Clause。Deep Learning比较流行的一个原因,主要是因为它原创 2017-08-20 19:24:56 · 32957 阅读 · 2 评论 -
DCNN与语义分割
级别1:DL快速上手级别2:从Caffe着手实践级别3:读paper,网络Train起来级别4:Demo跑起来读一些源码玩玩熟悉Caffe接口,写Demo这是硬功夫分析各层Layer输出特征级别5:何不自己搭个CNN玩玩Train CNN时关于数据集的一些注意事项级别6:加速吧,GPU编程关于语义分割的一些其它工作级别1:DL快速上手UFLD原创 2017-08-21 12:26:11 · 4094 阅读 · 1 评论 -
CNN:(局部感知+权共享机制:让一组神经元使用相同的连接权)
提出:全连接的结构下会引起参数数量的膨胀,容易过拟合且局部最优。图像中有固有的局部模式可以利用,所以,提出了CNN,并不是所有上下层神经元都能直接相连,而是通过“卷积核”作为中介。同一个卷积核在所有图像内都是共享的,图像通过卷积操作后仍然保留原来的位置关系。复合多个“卷积层”和“采样层”对输入信号进行加工,然后再连接层实现与输出目标之间的映射。多层的目的:一层卷积学到的特征往往是局部的,层原创 2017-10-31 19:53:53 · 9850 阅读 · 3 评论 -
如何改进你自己的CNN?
随着深度卷积神经网络(CNN)在图像处理领域的快速发展,它已经成为机器视觉领域的一种标准,如图像分割、对象检测、场景标记、跟踪、文本检测等。 然而,想要熟练掌握训练神经网络的能力并不是那么容易。比如,我们常常会遇到如下问题。你的数据和硬件有什么限制?你应该是从何种网络开始?你应该建立多少与卷积层相对的密集层?你的激励函数怎样去设置?即使你使用了最流行的激活函数,你也必须要用常规激活函数。原创 2017-11-14 21:01:38 · 7814 阅读 · 0 评论 -
(干货)经验之谈:DeepLearning---CNN调参策略(一)
由于博主毕业设计需求,因此将自己两年来的经验小结一下,供自己后期查阅,同时希望能够帮到初入DL领域的小可爱们。本篇博客纯属干货,有任何问题,欢迎大家评论,博主会在看到的第一时间帮大家解疑。首先说一下什么是卷积神经网络?一、卷积神经网络的数学模型卷积神经网络是一种特殊的深度前馈神经网络,该网络模型的基础模块为卷积流(为了避免层级之间全连接造成的参数冗余),包括卷积(用于维数拓展)、非线性(稀疏性、饱...原创 2018-03-01 14:07:54 · 5832 阅读 · 0 评论 -
用caffe训练自己的数据集时出错:type “caffe.ImageDataParameter” has no field named “backend”
答案见该文章:https://stackoverflow.com/questions/39343234/use-caffe-to-train-my-own-jpg-datasetstype-caffe-imagedataparameter-has-no-fi?answertab=votes#tab-top原创 2017-07-03 19:04:19 · 2205 阅读 · 0 评论 -
DL:epoch、 iteration和batchsize区别
深度学习中经常看到epoch、 iteration和batchsize,下面按自己的理解说说这三个的区别:(1)batchsize:批大小。在深度学习中,一般采用SGD训练,即每次训练在训练集中取batchsize个样本训练;(2)iteration:1个iteration等于使用batchsize个样本训练一次;(3)epoch:1个epoch等于使用训练集中原创 2017-07-10 16:12:10 · 1178 阅读 · 0 评论 -
深度学习里面的batchsize设置
博客参考:http://blog.csdn.net/ycheng_sjtu/article/details/49804041深度学习中的 Batch_SizeBatch_Size(批尺寸)是机器学习中一个重要参数,涉及诸多矛盾,下面逐一展开。首先,为什么需要有 Batch_Size 这个参数?Batch 的选择,首先决定的是下降的方向。如果数据集比较小,完全可以采用转载 2017-07-10 15:40:29 · 9741 阅读 · 0 评论 -
Ubuntu14.04 with GPU安装caffe时Makefile.config编译错误
编译caffe时,提示以下警告时: 解决方案:首先我们来看看Makefile.config里面的配置问题原因:如果你安装的时CUDA版本8.0,那么请记住从CUDA8.0开始compute capability 2.0和2.1被弃用了,所以可以将-gencode arch=compute_20, code=sm_20和-gencode arch=compute_20,code=原创 2017-02-28 21:02:41 · 685 阅读 · 0 评论 -
caffe部分配置修改后,重新编译caffe的教程
由于本人属于手残一党,所以经常会一不小把元编译好的caffe框架弄出问题,所以也在反反复复的重走弯路,下面就把今天重新编译caffe的过程写出来跟大家分享一下。以前的时候,每次一有问题,我就会从重装系统开始。因为我觉得差错很麻烦,但是发现每次重新从官网下载所需软件时,特别的耗时,所以今天就在已经安装caffe所需的其他软件的前提下,只是重新安装caffe,结果显示,我也成功了。一、重新编译原创 2017-02-28 21:22:47 · 6626 阅读 · 3 评论 -
solver.prototxt文件里面参数含义及其设置
solver 是caffe的核心之重,它是整个模型运行的参数配置文件。运行代码一般为:#caffe train --solver=*_solver.prototxt在DL中,损失函数(loss function)是非凸的,没有解析解,我们需要通过优化的方法来求解。solver的作用就是交替调用前向(forward)算法和后向(backward)算法来更新参数,从而最小化损失(loss),实原创 2017-02-15 16:47:26 · 5928 阅读 · 1 评论 -
自己训练的caffemodel用于测试图片时,出现的问题
问题描述:自己用了788张crack images、788张nocrack images,作为训练样本;用了262张crack images、262张nocrack images,作为caffe训练过程中的测试样本。这些图像均为1024*1024分割成的64*64大小的小图像。其中的lent_train_val.prototxt文件配置内容如下图所示。solver.prototxt原创 2017-03-04 10:16:07 · 1365 阅读 · 2 评论 -
ubuntu14.04安装完cuda之后遇到循环在登陆界面的问题
问题描述:ubuntu14.04,先安装了NVIDIA驱动后,安装的cuda8.0,由于安装cuda8.0时所有的选项都选择的是yes,所以造成驱动覆盖现象,重启之后,电脑一直在登陆界面循环。解决方法:首先,用以下命令卸载cuda:# sudo /usr/local/cuda-8.0/bin/uninstall_cuda_8.0.pl# sudo /usr/bin/nvidia原创 2017-03-15 12:27:58 · 2816 阅读 · 3 评论 -
数据可视化环境Python接口的配置
caffe程序是由C++语言写的,本身是不带数据可视化功能的。只能借助其他的库或者接口,如Python,MATLAB或者opencv。本文则选择Python接口。Python环境不能单独配置,必须要先编译好caffe,才能编译Python环境。Python环境配置说简单,实际操作起来却非常的复杂。此处强烈建议大家用anaconda这个集成工具进行安装。一、下载工具Anaconda下原创 2017-02-27 20:09:58 · 1384 阅读 · 0 评论 -
caffe:如何保存训练模型过程中的日志?
训练时,输入以下命令即可$ sudo GLOG_logtostderr=0 GLOG_log_dir='xxx/xxx/xxx/' build/tools/caffe train -solver examples/xxx/solver.prototxt其中,‘xxx/xxx/xxx/’为你想要存储日志的位置。原创 2017-04-03 21:46:38 · 2778 阅读 · 2 评论 -
caffe:如何保存训练日志?
训练时,输入以下命令即可$ sudo GLOG_logtostderr=0 GLOG_log_dir='xxx/xxx/xxx/' build/tools/caffe train -solver examples/xxx/solver.prototxt其中,‘xxx/xxx/xxx/’为你想要存储日志的位置。原创 2017-04-04 10:27:10 · 3418 阅读 · 0 评论 -
Python:如何使用jupyter绘制caffe训练过程中的loss和accuracy曲线?n
In [1] : import numpy as np import matplotlib.pyplot as plt import sys,os,caffe caffe_root='/home/che/caffe-master/' sys.path.insert(0,caffe_root+'pyt原创 2017-04-04 10:49:16 · 2889 阅读 · 0 评论 -
solver.prototxt含义及配置
####参数设置###################1. ####训练样本###总共:121368个batch_szie:256将所有样本处理完一次(称为一代,即epoch)需要:121368/256=475 次迭代才能完成所以这里将test_interval设置为475,即处理完一次所有的训练数据后,才去进行测试。所以这个数要大于等于475.如果想训练100代,转载 2017-04-04 15:53:12 · 763 阅读 · 0 评论 -
caffemodel的卷积层可视化(Python接口)
模型文件为自己训练的caffenet_iter_720.caffemodel,模型配置文件为deploy.prototxt。使用jupyter notebook作为Python可视化工具#首先导入必要的库In[1]:import numpy as npimport matplotlib.pyplot as pltimport os,sys,caffe%matplotli原创 2017-06-06 16:48:07 · 2425 阅读 · 1 评论 -
caffe: Layer的可视化
官方文档:http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/00-classification.ipynbClassification: Instant Recognition with CaffeIn this example we'll classify an image wit原创 2017-06-06 17:44:38 · 1250 阅读 · 0 评论 -
Fine-tuning a Pretrained Network for Style Recognition
官方网站:http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/02-fine-tuning.ipynbIn this example, we'll explore a common approach that is particularly useful in real-world applications: t原创 2017-06-07 10:12:30 · 807 阅读 · 0 评论 -
(干货)经验之谈:DeepLearning---(CNN)调参策略(二)
(干货)经验之谈:DeepLearning---卷积神经网络(CNN)(一)主要讲解了CNN模型的构造,那么本篇博客就主要讲解如何进行对应算法的训练策略。二、学习算法及训练策略下面,我们给出深度卷积神经网络的一些训练技巧,从数据的预处理、网络模型的参数初始化、训练过程中的学习速率及激活函数特性分析、正则化约束等角度总结一些实用的训练技巧。1、数据预处理数据预处理包括输入数据的预处理及隐层输出的归一...原创 2018-03-01 16:36:03 · 2542 阅读 · 1 评论