(干货)经验之谈:DeepLearning---(CNN)调参策略(二)

本文深入探讨了深度学习中CNN模型的训练策略,包括数据预处理、参数初始化、学习速率调整、激活函数选择和正则化约束。强调了局部连接、权值共享和平移不变性在深度卷积神经网络的优势,并提供了进一步学习资源。
摘要由CSDN通过智能技术生成

(干货)经验之谈:DeepLearning---卷积神经网络(CNN)(一)主要讲解了CNN模型的构造,那么本篇博客就主要讲解如何进行对应算法的训练策略

二、学习算法及训练策略
下面,我们给出深度卷积神经网络的一些训练技巧,从数据的预处理、网络模型的参数初始化、训练过程中的学习速率及激活函数特性分析、正则化约束等角度总结一些实用的训练技巧。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cche1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值