caffe学习系列:训练自己的图片集(超详细教程)

    学习的caffe的目的,不是简单的做几个练习,而是最终落实到自己的项目或科研中去。因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试的整个流程。

一、数据的准备

    有条件的同学,可以去ImageNet的官网点击打开链接,下载ImageNet图片来训练。但是我没有下载,因为我注册过程中一直出现bug。哭

    也可以去这个网盘点击打开链接下载图像数据,包括手写数字.jpg,手写数字.csv,人脸检测正负样本224*224,image.zip,.CASIA-WebFace.zip

    我重新找了500张图片来代替,分为大巴车、恐龙、大象、鲜花和马五个类,每个类100张。需要的同学,可以去这个网盘下载点击打开链接

    编号分别以3,4,5,6,7开头,各为一类。我从其中每类选出20张作为测试,其余80张作为训练。因此最终训练图片400张,测试图片100张,共5类。我将图片放在caffe-master根目录下的data文件下。即训练图片目录:data/re/train/,测试图片目录:data/re/test/

二、转换为lmdb格式

    首先在examples下面创建一个myfile的文件夹,来用存放配置文件和脚本文件。然后编写一个脚本create_filelist.sh,用来生成train.txt和test.txt清单文件

    #sudo mkdir examples/myfile

    #sudo vi examples/myfile/create_filelist.sh

    编辑create_filelist.sh文件,并写入如下代码,并保存

    #!/usr/bin/env sh
    DATA=data/re/
    MY=examples/myfile

    echo "Create train.txt..."
    rm -rf $MY/train.txt
    for i in 3 4 5 6 7
    do
    find $DATA/train -name $i*.jpg | cut -d '/' -f4-5 | sed "s/$/ $i/">>$MY/train.txt
    done
    echo "Create test.txt..."
    rm -rf $MY/test.txt
    for i in 3 4 5 6 7
    do
    find $DATA/test -name $i*.jpg | cut -d '/' -f4-5 | sed "s/$/ $i/">>$MY/test.txt
    done
    echo "All done"

    注: 这个脚本文件中,用到了

### OpenPose 训练教程 #### 导入必要的库和初始化环境设置 为了启动OpenPose的训练过程,需要确保安装了所有必需的依赖项并配置好开发环境。这通常涉及安装CUDA、cuDNN以及特定版本的Caffe框架,因为原始实现是基于此构建的[^1]。 ```bash pip install caffe opencv-python numpy matplotlib ``` #### 数据集准备与预处理 数据对于任何机器学习模型的成功至关重要,在开始训练之前要准备好适当的数据集。OpenPose可以使用MPII Human Pose Dataset或其他类似的公开数据源来进行训练。这些数据应该被转换成适合输入网络的形式,并且可能还需要进行一些额外的预处理工作,比如裁剪图片到固定大小或者增强数据多样性以提高泛化能力[^2]。 #### 定义超参数及配置文件 在实际编写代码前,先确定一系列影响最终效果的重要因素—即所谓的“超参数”。它们包括但不限于批量尺寸(batch size),迭代次数(iterations), 学习(learning rate)等。同时也要创建相应的配置文件(.prototxt files),用来描述神经网络架构及其连接方式。 #### 开始训练流程 一旦上述准备工作完成就可以着手于具体的编程实现了。这里给出一段简化版Python脚本来展示如何调用官方提供的API接口执行整个训练循环: ```python import os from pathlib import Path import sys # 将caffe路径加入PYTHONPATH以便能够成功引入pycaffe模块 sys.path.append(str(Path.home() / 'path_to_caffe/python')) import caffe if __name__ == '__main__': # 设置GPU模式运行 caffe.set_mode_gpu() solver_path = './models/solver.prototxt' solver = caffe.get_solver(solver_path) niter = 50000 # 总共迭代多少次 test_interval = 100 # 每隔多少步测试一次 train_loss = [] for it in range(niter): solver.step(1) # 进行单步优化 if (it % test_interval == 0 and it != 0): loss_value = float(solver.net.blobs['loss'].data) print(f"Iteration {it}, Loss={loss_value}") train_loss.append(loss_value) ``` 这段代码展示了基本的工作流:加载求解器定义(`solver.prototxt`) -> 初始化`Solver`对象-> 循环调用`solver.step()`方法逐步更新权重直到达到预定的最大迭代数。
评论 66
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Cche1

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值