2017-10-02(一个水杯引发的思考)

一个水杯引发的思考

有时候感觉人真是一个卑劣的动物,对于长时间拥有了的东西,从来不知道珍惜,自己以为它本来就属于自己,对其视而不见。直到有一天,你不小心失去了它,你才突然发现,它之所以属于你,没有任何的原因,只是缘分罢了。
说起来是非常搞笑的一件事情,我现在一个水杯也没有了,来了苏州之后,没有带以前水杯,就买了一个,在教室时候用它,回到了宿舍也用它,故而每天它都在我身边,一个月之后,我突然找不到它了,刚发现这件事情的时候,我在宿舍,我当时口渴难耐,于是找遍了宿舍所有的角落,没有发现杯子的踪迹,烦躁的我躺在床上想,我到底是把它遗失在了什么地方?可能是我记错了吧,我中午回来时候没有带,换在班级吧,我带着希望午睡了。下午兴冲冲的来到教室,走在门口就向着自己的座位望去,目光一直没有离开,直至目光铺满桌面。。。。。
我才更加相信,我的杯子丢了,那天下午直接在淘宝又买了一个,第二天就回来了。心情很快就好转了些,拿着新杯子非常高兴,哈哈哈,
但是知道今天的下午,睡觉起来正要去班级,发现少了些什么,哦,原来是杯子没有带,。。。。。没有找到,这次我不知道为何很清楚的认识到,定然是忘记在了食堂,当时很气恼,怀疑自己这个脑子的啊,下楼准备去食堂找找看,可是下去发现正在下雨,这个地方没有一周不下雨,很烦,直接去了教室,这次也没有当时的那种期望,因为我清楚的知道,它确实是落在了食堂。我每天下午去教室都要打一杯热水,可是今天下午杯子没有了,看着同学们高高兴兴的拿着自己的杯子去打水,我心情糟透了,突然感觉口渴的厉害,这种感觉是以往从来没有的,因为即使我口渴了,也不会突然那么强烈,难道这是人特有的一种感受吗?越是不拥有的东西,越是有着强烈的需求吗?其实如果此时杯子在,我也没有那么口渴。
如果有人很有缘分看到了我这篇文章,我的思想也触动了你的神经,请关注我,咋们一起交流,交个朋友,再次告诉大家,请万般珍惜现在所拥有的,但是你自以为在你眼里什么都不是的东西。

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值