win深度学习tensorflow1.3.0+GPU cuda8.0安装

本文详细介绍了在Windows环境下安装CUDA8.0、cuDNN,以及搭配TensorFlow1.3.0-GPU的步骤。强调了版本配套的重要性,并提供了下载链接和清华大学镜像源。还提到了TensorFlow1.3对比0.12版本在GPU资源利用上的优化,以及Anaconda环境下创建Python3.5环境的必要性。
摘要由CSDN通过智能技术生成

1.安装顺序:先cuda(最好使用8.0,够了),再cudnn,python,pip升级,pip安装tensorflow。

2.适合的cudnn必须配套,一般有3套8,9,9.2,但现在似乎小版本号也有差别
https://developer.nvidia.com/rdp/cudnn-archive 各版本下载地址

3.tensorflow和他们也必须配套,这里1.3适合cuda8.0

4.cuda9.2网址 https://developer.nvidia.com/cuda-downloads,浏览器收藏有各版本cuda链接
cudnn网址 https://developer.nvidia.com/rdp/cudnn-download

5.清华大学镜像,可以修改版本号,CPU或gpu
pip install –-upgrade https://mirrors.tuna.tsinghua.edu.cn/tensorflow/windows/gpu/tensorflow_gpu-1.3.0rc0-cp35-cp35m-win_amd64.whl

6.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值