【Data Structure】堆和堆排序 [part 1]

本文详细介绍了二叉堆的概念,包括最大堆与最小堆的区别,以及堆的自我调整机制。通过具体的实例,展示了节点的插入、删除和构建二叉堆的过程,并提供了相应的代码实现。最后,基于二叉堆的特性,归纳出了堆排序算法的具体步骤。
摘要由CSDN通过智能技术生成

堆和堆排序 [part 1]
    4-1 为什么使用堆
    4-2 堆的基本存储
    4-3 Shift Up
    4-4 Shift Down
    4-5 基础堆排序和Heapify
二叉堆本质上是一种完全二叉树,它分为两个类型:
1.最大堆
2.最小堆

什么是最大堆呢?最大堆任何一个父节点的值,都大于等于它左右孩子节点的值。


什么是最小堆呢?最小堆任何一个父节点的值,都小于等于它左右孩子节点的值。


二叉堆的根节点叫做堆顶

最大堆和最小堆的特点,决定了在最大堆的堆顶是整个堆中的最大元素;最小堆的堆顶是整个堆中的最小元素

堆的自我调整

对于二叉堆,如下有几种操作:
插入节点
删除节点
构建二叉堆
这几种操作都是基于堆的自我调整。
下面让我们以最小堆为例,看一看二叉堆是如何进行自我调整的。

1.插入节点

二叉堆的节点插入,插入位置是完全二叉树的最后一个位置。比如我们插入一个新节点,值是 0。

这时候,我们让节点0的它的父节点5做比较,如果0小于5,则让新节点“上浮”,和父节点交换位置。

继续用节点0和父节点3做比较,如果0小于3,则让新节点继续“上浮”。

继续比较,最终让新节点0上浮到了堆顶位置。

2.删除节点

二叉堆的节点删除过程和插入过程正好相反,所删除的是处于堆顶的节点。比如我们删除最小堆的堆顶节点1。

这时候,为了维持完全二叉树的结构,我们把堆的最后一个节点10补到原本堆顶的位置。

接下来我们让移动到堆顶的节点10和它的左右孩子进行比较,如果左右孩子中最小的一个(显然是节点2)比节点10小,那么让节点10“下沉”。

继续让节点10和它的左右孩子做比较,左右孩子中最小的是节点7,由于10大于7,让节点10继续“下沉”。

这样一来,二叉堆重新得到了调整。

3.构建二叉堆

构建二叉堆,也就是把一个无序的完全二叉树调整为二叉堆,本质上就是让所有非叶子节点依次下沉

我们举一个无序完全二叉树的例子:

首先,我们从最后一个非叶子节点开始,也就是从节点10开始。如果节点10大于它左右孩子中最小的一个,则节点10下沉。

接下来轮到节点3,如果节点3大于它左右孩子中最小的一个,则节点3下沉。

接下来轮到节点1,如果节点1大于它左右孩子中最小的一个,则节点1下沉。事实上节点1小于它的左右孩子,所以不用改变。

接下来轮到节点7,如果节点7大于它左右孩子中最小的一个,则节点7下沉。

节点7继续比较,继续下沉。

这样一来,一颗无序的完全二叉树就构建成了一个最小堆。

堆的代码实现

在撸代码之前,我们还需要明确一点:
二叉堆虽然是一颗完全二叉树,但它的存储方式并不是链式存储,而是顺序存储。换句话说,二叉堆的所有节点都存储在数组当中


数组中,在没有左右指针的情况下,如何定位到一个父节点的左孩子和右孩子呢?
像图中那样,我们可以依靠数组下标来计算。
假设父节点的下标是parent,那么它的左孩子下标就是 2*parent+1;它的右孩子下标就是  2*parent+2
比如上面例子中,节点6包含9和10两个孩子,节点6在数组中的下标是3,节点9在数组中的下标是7,节点10在数组中的下标是8。
7 = 3*2+1

8 = 3*2+2
刚好符合规律。
有了这个前提,下面的代码就更好理解了:

    public static void upAdjust(int[] array){
        int childIndex = array.length - 1;
        int parentIndex = (childIndex - 1) / 2;//父节点的坐标等于孩子节点的坐标-1再除2
        //temp用于保存插入的叶子节点值,用于最后的赋值
        int temp = array[childIndex];
        while(childIndex > 0 && temp < array[parentIndex]){
            //无需真正交换,单向赋值即可
            array[childIndex] = array[parentIndex];
            childIndex = parentIndex;
            parentIndex = (childIndex - 1)/2;//父节点的坐标等于孩子节点的坐标-1再除2
        }
        array[childIndex] = temp;
    }

    /**

     * 下沉调整
     * @param array     待调整的堆
     * @param parentIndex    要下沉的父节点
     * @param parentIndex    堆的有效大小
     */
    public static void downAdjust(int[] array, int parentIndex, int length){
        //temp保存父亲节点值,用于最后的赋值
        int temp = array[parentIndex];
        int childIndex = parentIndex * 2 +1;//第一个孩子节点的坐标等于父亲节点的坐标*2再加1
        while(childIndex < length){
            //如果有右孩子,且右孩子大于左孩子的值,则定位到右孩子(找到最大的孩子)
            if(childIndex + 1 < length && array[childIndex + 1] > array[childIndex]){
                childIndex++;
            }
            //如果父节点小于任何一个孩子的值,位置已经确定,直接跳出
            if(temp >= array[childIndex])
                break;
            //无需真正交换,单向赋值即可
            array[parentIndex] = array[childIndex];
            parentIndex =childIndex;
            childIndex = 2 * childIndex + 1;
        }
        array[parentIndex] = temp;
    }

    public static void buildHeap(int[] array){
        //从最后一个非叶子节点(array.length / 2)开始,依次下沉调整
        for(int i = (array.length/2); i >= 0; i--){
            downAdjust(array, i, array.length);
        }
    }

代码中有一个优化的点,就是父节点和孩子节点做连续交换时,并不一定要真的交换,只需要先把交换一方的值存入temp变量,做单向覆盖,循环结束后,再把temp的值存入交换后的最终位置。

让我们回顾一下二叉堆和最大堆的特性:

1.二叉堆本质上是一种完全二叉树

2.最大堆的堆顶是整个堆中的最大元素

当我们删除一个最大堆的堆顶(并不是完全删除,而是替换到最后面),经过自我调节,第二大的元素就会被交换上来,成为最大堆的新堆顶。

 

正如上图所示,当我们删除值为10的堆顶节点,经过调节,值为9的新节点就会顶替上来;当我们删除值为9的堆顶节点,经过调节,值为8的新节点就会顶替上来.......

由于二叉堆的这个特性,我们每一次删除旧堆顶,调整后的新堆顶都是大小仅次于旧堆顶的节点。那么我们只要反复删除堆顶,反复调节二叉堆,所得到的集合就成为了一个有序集合,过程如下:

删除节点9,节点8成为新堆顶:

删除节点8,节点7成为新堆顶:

删除节点7,节点6成为新堆顶:

删除节点6,节点5成为新堆顶:

删除节点5,节点4成为新堆顶:

删除节点4,节点3成为新堆顶:

删除节点3,节点2成为新堆顶:

到此为止,我们原本的最大堆已经变成了一个从小到大的有序集合。之前说过二叉堆实际存储在数组当中,数组中的元素排列如下:

 

由此,我们可以归纳出堆排序算法的步骤:

1. 把无序数组构建成二叉堆。

2. 循环删除堆顶元素,移到集合尾部,调节堆产生新的堆顶。

堆排序时间复杂度分析

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值