Python —— Numpy数组组合

Numpy数组组合
运行 :Jupyter

import numpy

world_alcohol = numpy.genfromtxt('world_alcohol.txt',delimiter",",dtype= str)
print(type(world_alcohol))
print(world_alcohol)
print(help(numpy.genfromtxt))//查询函数使用方法或者校核函数

import numpy
vector = numpy.array([1,2,3,4])
print(vector.shape)//.shape查询矩阵的行列元素,
vector.dtype//读取类型
print(vector[0,3])//左闭右开,结果为123

创建3*3数组后进行数组组合
水平组合、垂直组合、深度组合、列组合、行组合

创建3*3数组
from numpy import *
a = arange(9).reshape(3,3) 
print(a)
数组运算
b = 2 * a
print(b)
print(a.shape)
print(b.shape)
//水平组合, 将ndarray对象构成的元组作为参数,传给hstack函数
ch = hstack((a,b))
print(ch)
//或者用concatenate函数实现同样的效果
d = concatenate((a,b), axis=1)
print(d)
//垂直组合,同样需要构造一个元组作为参数,只不过是传给vstack函数
v = vstack((a,b))
print(v)
//用concatenate函数实现同样的效果,此时axis参数设置为0,这也是axis参数的默认值
cv = concatenate((a,b), axis=0)
print(cv)

深度组合

import numpy as np
print('\na:')
a = np.arange(9).reshape(3,3)
print(a)
print('\nb:')
b=np.array([[11,22,33],[44,55,66],[77,88,99]])
print(b)
c = np.dstack((a,b)) 
print('\nc:')
print(np.dstack((a,b)))

列组合、行组合

import numpy as np
oned = arange(2)
print('\noned:')
print(oned)
twice_oned = 2 * oned
print('\ntwice_oned:')
print(twice_oned)
c = column_stack((oned, twice_oned))
print('\nc:')
print(c)
d = row_stack((oned, twice_oned))
print('\nd:')
print(d)

结果

oned:
[0 1]

twice_oned:
[0 2]

c:
[[0 0]
 [1 2]]

d:
[[0 1]
 [0 2]]

参考: Numpy 组合数组
参考: python中数组(numpy.array)的基本操作

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值