英伟达 4090 与 4090D性能差距实测

性能对比 4090D的性能是4090的85%

这是两张4090显卡启动截图 平均速率大约是 4.04 it/s。

在这里插入图片描述

这是两张4090D的启动截图 平均速率大约是 3.47 it/s。

在这里插入图片描述

这是四张4090D的启动截图 平均速率大约是 6.79 it/s。

在这里插入图片描述

这是两张4090推理速度

在这里插入图片描述

这是4张4090D的推理速度

在这里插入图片描述

### NVIDIA GeForce RTX 4090 Compatible CUDA Version Installation Guide For the NVIDIA GeForce RTX 4090, ensuring compatibility between the GPU and CUDA versions is crucial to avoid issues such as unsupported compute capabilities. The GeForce RTX 4090 has a compute capability of `sm_89` which requires at least CUDA Toolkit version 12.0 or higher due to its advanced architecture features[^1]. When encountering errors like "GeForce RTX 3080 with CUDA capability sm_86 is not compatible," this indicates that the installed PyTorch (or similar software) does not support the specific compute capability of the hardware being used. For newer GPUs including those from the RTX 40 series, it's essential to verify both the CUDA toolkit and any dependent libraries are up-to-date[^2]. The installation process should proceed carefully considering existing drivers on your system: - **Preparation**: Before installing new CUDA toolkits, check if there’s an already present Nvidia driver by running commands related to checking installed packages. - **Driver Handling During Installation**: When executing the CUDA installer (`cuda_xxx.run`), users might receive notifications about pre-installed Nvidia drivers; these can be ignored safely during the setup procedure since you have control over selecting components within the installer interface where choosing only necessary parts while skipping driver updates may prevent conflicts[^3]. #### Example Command Line Instructions for Installing CUDA via .run File ```bash # Download appropriate CUDA package first then run below command sudo sh cuda_xxx.run --silent --toolkit --override ``` --related questions-- 1. What steps need attention when updating the CUDA toolkit alongside keeping my current graphics card driver? 2. How do I confirm whether my installed PyTorch matches the required specifications for supporting newer GPUs? 3. Can older versions of CUDA work efficiently with modern GPUs like the RTX 4090 without performance penalties? 4. Are there alternative methods besides using `.run` files to install CUDA toolkits specifically tailored towards certain GPU models? 5. In what scenarios would one choose to update their system's Nvidia driver along with a fresh CUDA installation rather than maintaining separate installations?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值