RTX 4090D 48GB超大显存显卡现身:性能飞跃还是市场试探?

近日,中国市场上出现了两款引人注目的显卡新品——RTX 4090D 48GB和RTX 4080 SUPER 32GB,这两款显卡以其翻倍的显存容量吸引了众多科技爱好者和专业用户的关注。特别是RTX 4090D 48GB,其显存容量高达48GB,相比常规版本的24GB实现了质的飞跃,引发了业界的广泛讨论。
在这里插入图片描述

RTX 4090D 48GB:显存容量翻倍的背后

据爆料,这两款显卡自6月底开始在中国市场悄悄流通,但目前主要通过AI云计算平台进行租用。然而,如果消费者想要单独购买一块RTX 4090D 48GB显卡,则需要支付高达1.8万元的价格,这比官方24GB版本的RTX 4090D贵了约5000元。
在这里插入图片描述
这些自定义显卡的主要用途不是用于加密挖矿,而是用于训练大型语言模型和其他生成AI模型,这些模型需要大量的计算能力和内存容量。

虽然最初的推文没有包括照片或实物证据,但它证实了RTX4090 D的内存带宽为937GB/s,与GDDR 6X内存速度一致。AD 102 GPU提供48 GB内存容量,通常在RTXADA工作站系列中看到,但使用GDDR 6标准。这表明48 GB RTX 4090 D具有更快的内存。

### 部署 DeepSeek-R1-Distill-Qwen-14B 模型 为了将从 Hugging Face 下载的 `DeepSeek-R1-Distill-Qwen-14B` 模型部署到指定硬件配置的本地服务器上,可以按照以下方法操作: #### 准备环境 确保安装必要的依赖库并设置好 Python 环境。对于大型模型如 Qwen-14B,在资源充足的机器上运行尤为重要。 ```bash pip install torch transformers accelerate optimum[hf] ``` #### 加载模型 加载已下载至本地目录中的预训练模型实例化对象,并将其放置于 GPU 上加速推理过程。 ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "./DeepSeek-14B" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path).to('cuda') ``` 考虑到目标设备配备了强大的 NVIDIA GeForce RTX 4090 显卡以及大容量内支持,这有助于显著提升处理速度和性能表现[^1]。 #### 创建API接口服务 利用 FastAPI 或 Flask 构建简单的 RESTful API 来提供对外部请求的支持,使得其他应用程序能够通过 HTTP 协议访问该 NLP 模型的服务端点。 ```python import uvicorn from fastapi import FastAPI from pydantic import BaseModel app = FastAPI() class InputText(BaseModel): text: str @app.post("/predict/") async def predict(input_text: InputText): inputs = tokenizer(input_text.text, return_tensors="pt").to('cuda') outputs = model.generate(**inputs) result = tokenizer.decode(outputs[0], skip_special_tokens=True) return {"result": result} if __name__ == "__main__": uvicorn.run(app, host='0.0.0.0', port=8000) ``` 此段代码创建了一个基于 FastAPI 的 Web 应用程序,它监听来自客户端发送过来的文字输入并通过 POST 方法返回由模型生成的结果字符串[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值