RCNN用到的SelectiveSearch的理解笔记

本文是关于Selective Search算法在深度学习物体识别中的应用理解笔记。该算法通过颜色、纹理等信息划分图像区域,减少计算量,解决了传统滑动窗口方法的效率问题。文章介绍了算法的思路、实现细节及待解决的问题,如层次关系、完全划分和速度优化。Selective Search通过区域聚合和多样化的相似度计算,确保了物体层次的完整性和计算效率。
摘要由CSDN通过智能技术生成

在学习RCNN的过程中,我是从Rich feature hierarchies for accurate object detection and semantic segmenta这篇论文开始,这个论文给出了用DeepLearning做物体识别的一个思路,就是用selectivesearch之类的算法,生成一系列候选区域,并通过与目标区域的重叠比例给出一个值,然后进行训练:

抱着知其然也知其所以然的思路,我又找到slective search的论文:Selective Search for Object Recognition

记录一下论文阅读笔记:

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

思路

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值