打马赛克就安全了吗?AI消除马赛克,GitHub霸榜

Depix是一款能够从像素化图像中恢复隐藏文字密码的工具。适用于使用线性方框滤波器创建的像素化图像。通过像素化待处理字符的德布鲁因序列并进行比对,Depix能有效还原被隐藏的信息。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击 机器学习算法与Python学习选择加星标

精彩内容不迷路

来源:机器之心

像素化(又称马赛克)是一种常见的打码方式,通过降低图像中部分区域的分辨率来隐藏某些关键信息,比如:

 

再比如:

看图找马赛克!(找不到请看右侧原图)

但是,在你想隐藏信息的同时,有一些技术却反其道而行之,试图将图片还原为原始状态。

最近,一个名为 Depix 的 GitHub 项目爆火,上线三天 star 量已经高达 6.9k。项目作者 Sipke Mellema 是一名信息安全顾问。

项目地址:

https://github.com/beurtschipper/Depix

Depix 能够从像素化图像截图中恢复原图中包含的文字密码。该项目适用于使用线性方框滤波器(linear box filter)创建的像素化图像。如下图所示,项目作者给出了像素化图像、恢复之后的效果和原图的对比结果:

马赛克打得够严实了,不过 Depix 还是基本解读出了被隐藏的信息。

如何使用

使用 Depix 从像素化图像截图中恢复文字密码,操作也比较简单:

  • 从截图中分割出矩形像素化 block;

  • 在具有相同字体设置(包括文本大小、字体、颜色、hsl)的编辑器中,粘贴待处理字符的德布鲁因(De Bruijn sequence);

  • 给该序列截图,尽可能使用和像素化图像相同的截图工具;

  • 执行命令:

python depix.py -p [pixelated rectangle image] -s [search sequence image] -o output.png

Depix 算法利用线性方框滤波器单独处理每一个 block 这一事实。它对搜索图像中的每一个 block 执行像素化以寻找直接匹配。

对于大部分像素化图像,Depix 尽量寻找单匹配结果,并假设这些匹配是正确的。至于周围多匹配 block 的结果被看作像素化图像中相同的几何距离,并认为这些匹配也是正确的。该过程重复多次。

在正确的 block 没有更多几何匹配后,Depix 将直接输出所有正确的 block。对于多匹配 block,Depix 将输出所有匹配的平均值。

Depix 背后的算法

像素化常使用线性方框滤波器实现。线性方框滤波器的实现很简单,速度很快,可以并行处理多个 block。

由于线性方框滤波器是一种确定性算法,对同样的值执行像素化通常会产生同样的像素化 block。使用同样位置的 block 对相同文本执行像素化,会得到同样的 block 值。我们可以尝试像素化文本来找出匹配的模式。幸运的是,这对于秘密值的一部分同样奏效。我们可以把每个 block 或 block 组合看作一个子问题。

项目作者没有选择创建潜在字体的查找表。该算法要求在相同背景上具备相同的文本大小和颜色。现代文本编辑器还会添加色调、饱和度和亮度,也就是说存在海量潜在字体。

项目作者给出的解决方案也很简单:使用待处理字符的德布鲁因序列,将其粘贴到相同的编辑器中,然后截图。该截图可以用作相似 block 的查找图像,例如:

德布鲁因序列包括待处理字符的所有双字符组合。这很重要,因为一些 block 会重叠两个字符。找出恰当的匹配需要搜索图像中具备相同像素配置的 block。

在以下测试图像中,Depix 算法无法找到「o」的一部分。这是因为在搜索图像中,搜索 block 还包含下一个字母(「d」)的一部分,但在原始图像中这里有个空格。

创建字母的德布鲁因序列时加上空格显然会带来同样的问题:算法无法找到后续字母的恰当 block。有空格又有字母的图像需要更长的搜索时间,但结果也更好。

对于大部分像素化图像而言,Depix 似乎能够找到 block 的单匹配结果,并假设这是正确的。然后将其周围多匹配 block 的匹配结果看作在像素化图像中处于相同的几何距离,并假设这些匹配也是正确的。

在正确的 block 没有更多几何匹配后,Depix 直接输出所有正确的 block。对于多匹配 block,Depix 将输出所有匹配的平均值。虽然 Depix 的输出并不完美,但已经算不错了。

下图展示了包含随机字符的测试图像的去像素化结果,大部分字符被正确读取:

对这个项目感兴趣的读者,可以自行尝试。

以后截图时给敏感信息打码,看来不能简单地用「马赛克了」。

参考链接:https://www.linkedin.com/pulse/recovering-passwords-from-pixelized-screenshots-sipke-mellema/?trackingId=yYFSUnuxRXasNV%2Fh3ZsiSw%3D%3D


  • 你点的每个“在看”,我都认真当成了AI

### 关于GitHub上的去马赛克项目 对于寻找GitHub上有关去除图片或视频中马赛克效果的开源项目,可以考虑基于深度学习的方法来实现这一目标。这些方法通常依赖卷积神经网络(CNNs),通过大量带噪点和清晰图像的数据集训练模型,使其能够有效地预测并还原被遮挡区域的内容。 #### 使用PyTorch框架的一个简单实例 下面是一个简化版的例子,展示了如何利用预训练好的U-Net架构来进行图像修复工作: ```python import torch from torchvision import transforms from PIL import Image class DeMosaicModel(torch.nn.Module): def __init__(self): super(DeMosaicModel, self).__init__() # 定义UNet结构 ... def load_image(image_path): transform = transforms.Compose([ transforms.Resize((256, 256)), transforms.ToTensor() ]) image = Image.open(image_path) return transform(image).unsqueeze(0) model = DeMosaicModel().cuda() # 假设GPU可用 checkpoint = torch.load('path_to_pretrained_model.pth') model.load_state_dict(checkpoint['state_dict']) input_img = 'mosaic_image.png' output_img = 'restored_image.png' with torch.no_grad(): img_tensor = load_image(input_img).cuda() restored = model(img_tensor)[0].cpu().clamp(0, 1) save_image(restored, output_img) ``` 此代码片段仅作为概念验证,并未包含完整的数据加载逻辑以及具体的U-Net定义细节。实际应用时还需要进一步优化和完善[^1]。 为了找到更成熟的解决方案,在GitHub平台上搜索关键词如`de-mosaic`, `image restoration` 或者查看特定库比如OpenCV贡献者的仓库可能会有所帮助。此外,也可以关注最新的研究进展,因为该领域技术正在快速发展之中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值