论文阅读笔记《Depth-attentional Features for Single-image Rain Removal》

本文分析了雨景与景深的关系,提出了一种新的雨成像模型,并创建了RainCityscape数据集。通过端到端网络,利用深度引导的注意力机制学习深度注意特征,回归残差图以实现去雨效果。网络包括深度图预测、注意力权重学习和残差图生成等步骤。
摘要由CSDN通过智能技术生成

摘要

降雨现象,物体近处雨条纹遮挡,远处雾遮挡 ( 现有方法和数据集忽略了此种物理属性 ) 。在这项工作中。1. 分析雨景受景深度的视觉效果,制定了雨带和雾的雨成像模型。2. 准备了一个名为RainCityscape的新数据集,在真实的户外照片上带有雨条纹和雾。3. 端到端网络,通过深度引导的注意机制训练来学习深度注意特征,并回归残贴图生成无雨图进行输出。

介绍

在这里插入图片描述
t r t_r tr 表示为雨带的视觉强度, t r 0 t_{r0} tr0 表示为模型中的最大 t r t_r tr

  1. 当场景离摄像机近( d ≤ d 1 d \le d_1 dd1 ), 图像由大量雨条纹和小雾组成。此时 t r = t r 0 t_r=t_{r0} tr=tr0, d 1 = 2 f a d_1=2fa d1=2fa, f f f 为焦距, a a a 为雨滴半径。
  2. 当场景远离摄像机时( d ≥ d 2 ≫ d 1 d \ge d_2 \gg d_1 dd2d1),图像由大量雾和小量雨条纹组成。随着深度得增加, t r t_r tr趋于0。
  3. 当深度位于 d 1 d_1 d1, d 2 d_2 d2 之间,雨条纹减少,雾增加。

在这里插入图片描述
O ( x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值