论文阅读笔记 - CBAM: Convolutional Block Attention Module


论文原文 https://arxiv.org/abs/1807.06521

摘要

文章提出卷积块注意力模块,对于前馈神经网络来说,这是一个简单然而有效的注意力模型。给定一个中间层的特征图,CABM可以推断出一个空间维度上和通道维度上的注意力图,将注意力图与原特征图相乘得到改进后的特征图。CBAM是一个轻量的通用的模型,它可以运用到任何CNN里面,和CNN一起端到端地训练,只有一些微不足道的参数支出

简介

为了改进CNN的表现力,研究人员研究网络的3个重要因素:深度,宽度,基数。
从LeNet到ResNet,CNN变得越来越深,表现力也越来越强。VGG说明堆叠相同形状的块会得到不错的结果。和VGG类似,ResNet堆叠残差块来建立一个非常深的结构。GoogleNet说明卷积核的宽度也是提升模型效果的一个重要因素。有人在ResNet上作了实验,发现通过增加卷积核的宽度,28层的ResNet比没有增加宽度的1001层网络还要好(在cifar数据集,图像分类任务中)。有人提出了增加网络的基数,通过经验发现,增加网络的基数可以节省参数,而且相对于增加宽度和深度,增加网络的基数可以带来更好的表现力。
除了这些因素,attention也会影响模型的效果,attention可以告诉我们集中关注那些地方。我们的目标是利用attention机制去提高模型的表现力,关注重要的特征,抑制不重要的特征。文章提出了一种新的模型,Convolutional Block Attention Module,卷积块注意力模型。由于卷积操作是通过混合不同通道上,空间上的信息来提取信息特征,我们的模型在空间和通道维度上加重有用的信息,抑制无用的信息。文章模型的两个分支,channel-wize attention 学习 ‘what’,spatial-wize attention 学习’where‘。通过可视化方法Grad-CAM发现,使用了CBAM的模型可以可好的把关注点集中在目标物体上。我们推测性能的提升来源于更精确的attention和不相关类别之间的噪声的抑制
CBAM

研究现状

网络设计

网络设计是很重要的,网络设计的越好,模型的效果越好。那么怎么去设计网络呢?一个简单的方式就是增加模型的深度,但是简单增加模型的深度会使得模型饱和,这是由于梯度回传造成的。Resnet通过使用残差连接改善了梯度回传问题,网络可以更深了,后面基于resnet又发展了许多模型,这里略过。

attention 机制

前人提出了许多attention 方式,比如

Residual Attention Network

https://arxiv.org/abs/1704.06904
Resudual Attention Network

Squeeze-and-Excitation

https://arxiv.org/abs/1709.01507
在这里插入图片描述

CBAM

channel attention module

在这里插入图片描述
channel attention model 利用channels 之间的联系来寻找哪些channels 是更有意义的。

spatial attention module

在这里插入图片描述

使用方法

夹在两层CNN之间。
在这里插入图片描述

代码实现

channel attention

class ChannelAttention(nn.Module):
    def __init__(self, in_planes, ratio=16):
        super(ChannelAttention, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.max_pool = nn.AdaptiveMaxPool2d(1)

        self.fc1   = nn.Conv2d(in_planes, in_planes // 16, 1, bias=False)
        self.relu1 = nn.ReLU()
        self.fc2   = nn.Conv2d(in_planes // 16, in_planes, 1, bias=False)

        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))
        max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))
        out = avg_out + max_out
        return self.sigmoid(out)

spatial attention

class SpatialAttention(nn.Module):
    def __init__(self, kernel_size=7):
        super(SpatialAttention, self).__init__()

        assert kernel_size in (3, 7), 'kernel size must be 3 or 7'
        padding = 3 if kernel_size == 7 else 1

        self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=padding, bias=False)
        self.sigmoid = nn.Sigmoid()

    def forward(self, x):
        avg_out = torch.mean(x, dim=1, keepdim=True)
        max_out, _ = torch.max(x, dim=1, keepdim=True)
        x = torch.cat([avg_out, max_out], dim=1)
        x = self.conv1(x)
        return self.sigmoid(x)

fusion

class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)

        self.ca = ChannelAttention(planes)
        self.sa = SpatialAttention()

        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        out = self.ca(out) * out # 广播机制
        out = self.sa(out) * out # 广播机制

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out

参考

https://github.com/luuuyi/CBAM.PyTorch/blob/master/model/resnet_cbam.py

### 回答1: CBAM是卷积块注意力模块的缩写,是一种用于交替堆叠到深度卷积神经网络(CNNs)中的模块。它包含两个子模块:通道注意力模块和空间注意力模块。通道注意力模块用来对每个通道进行加权,确定哪些通道最重要。空间注意力模块在每个通道中对所有空间位置进行加权,可以捕捉不同位置的重要性,从而更好地定位物体。 CBAM的优点在于,它能够提高CNNs的性能,减少了过度拟合的情况。CBAM结构的输入任意大小、任意通道数、任意深度,因此可以适用于各种计算机视觉任务,包括图像分类,物体检测和语义分割等。 总之,CBAM是一种具有高灵活性和高性能的卷积块注意力模块,能够极大地增强CNNs的表达能力,提高计算机视觉任务的准确性。 ### 回答2: CBAMConvolutional Block Attention Module),是一种用于图像分类的Attention模块,它主要是用于增强卷积神经网络(CNN)的特征表达能力,使得CNN能够更好地区分不同种类的图像。 CBAM结构由两部分组成,分别是CBAM-Channel和CBAM-Spatial。在CBAM-Channel中,它通过引入注意力机制,对每个通道的特征进行加权求和,并且使用全局平均池化操作,计算其重要性参数,进而对特征进行修正,从而提升模型的表达能力。CBAM-Spatial则通过空间注意力机制对图像中的区域进行注意力分配权重,进一步优化模型的性能。 CBAM在图像分类方面的性能表现非常卓越。实验证明,在对比始ResNet和ResNeXt网络,以及加入CBAM的ResNet和ResNext网络进行图像分类时,加入CBAM的ResNet和ResNeXt网络具有更强的表达能力和更高的分类准确性,同时,它在训练过程中的收敛速度也有所提升。 总的来说,CBAM是一种非常有效的图像分类模块,利用注意力机制对CNN的特征进行增强,为图像分类任务提供了更好的性能表现。随着人工智能的迅速发展,CBAM在图像识别、物体检测等领域将具有广阔的应用前景。 ### 回答3: CBAM是卷积块注意力模块的缩写,它是一种用于图像分类和目标检测的神经网络模型。CBAM模块通过将通道和空间注意力机制组合在一起,从而有效地提高了模型的性能。 CBAM模块分为两个部分:通道注意力机制和空间注意力机制。通道注意力机制是针对图像特征中的通道信息进行关注,它可以基于每个通道的特征图来计算权重,然后对于每个通道进行信息的调整和加权。这样,在网络中的每个层次上都能更好地利用有用的通道信息,减少无用信息对网络性能的影响。 空间注意力机制是针对图像特征中的空间信息进行关注。它能够自适应地计算每个像素点的权重,然后对于每个像素点进行信息的调整和加权。这样,网络中的每个空间位置都能更好地利用有用的空间信息,提高目标检测和分类的准确率。 通过组合这两种注意力机制,CBAM模块能够区分有用和无用的特征,从而在图像分类和目标检测任务中取得更好的性能。CBAM模块通常被用在深度卷积神经网络中,例如ResNet以及MobileNet等,以提高整个网络中的特征提取能力和分类性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值