Noise Conditional Score Networks 简单总结

Noise Conditional Score Networks

Score

S c o r e = ∇ x l o g   p ( x ) (1) Score = \nabla_xlog~{p(x)} \tag{1} Score=xlog p(x)(1)

Score 是论文中的一个定义,表示概率密度 p ( x ) p(x) p(x)的梯度,沿着概率密度的梯度向前走,会走到概率密度最高的点。

郎之万动力学采样

x ~ t = x ~ t − 1 + ϵ 2 ∇ x ~ log ⁡ p ( x ~ t − 1 ) + ϵ z t (2) \tilde{x}_t = \tilde{x}_{t-1} + \frac{\epsilon}{2} \nabla_{\tilde{x}} \log p(\tilde{x}_{t-1}) + \sqrt{\epsilon} z_t \tag{2} x~t=x~t1+2ϵx~logp(x~t1)+ϵ zt(2)

z t z_t zt表示高斯噪声, ϵ \epsilon ϵ表示步长,这个公式表示沿着Score向前走,会走到概率密度最高的点,也就是真实的数据分布

Score learning

要想从公式(2)得到真实的数据分布,关键是要学习Score。
L = 1 2 E P data ( x ) [ ∥ s θ ( x ) − ∇ x log ⁡ p ( x ) ∥ 2 2 ] (3) L = \frac{1}{2} \mathbb{E}_{P_{\text{data}}(x)} \left[\left\| s_{\theta}(x) - \nabla_{x} \log p(x) \right\|_2^2 \right] \tag{3} L=21EPdata(x)[sθ(x)xlogp(x)22](3)

直接通过公式(3)学习存在1个问题:

数据密度分布存在低密度区域,对应的样本少, s θ ( x ) s_{\theta}(x) sθ(x)学习不充分,在这些样本点上不能得到足够准确的梯度分数。

通过在真实数据中引入微小的高斯噪声来模拟密度低的样本点,使 s θ ( x ) s_{\theta}(x) sθ(x)学习充分。刚开始的噪声大,后面的噪声小

Noise Conditional Score learning

L = 1 2 E P data ( x ) E x ~ ∼ N ( x ; σ 2 I ) [ ∥ s θ ( x ~ ; σ ) + x ~ − x σ 2 ∥ 2 2 ] (4) L = \frac{1}{2} \mathbb{E}_{P_{\text{data}}(x)} \mathbb{E}_{\tilde{x} \sim \mathcal{N}(x; \sigma^2 I)} \left[ \left\| s_{\theta}(\tilde{x}; \sigma) + \frac{\tilde{x} - x}{\sigma^2} \right\|_2^2 \right] \tag{4} L=21EPdata(x)Ex~N(x;σ2I)[ sθ(x~;σ)+σ2x~x 22](4)

加噪的目的是让样本分布的空间扩大,前期加噪越强,分布空间越大。到后期,加噪小,几乎等于真实样本分布。Score也会越来越准确

这篇文章是一个简单总结,详细的推导 可以看这篇文章这篇文章

补充知识:

郎之万动力学[^1]用随机微分方程描述粒子的运动,粒子运动的方向由当前位置的能量密度函数的梯度来指导(粒子会朝着从能量密度高向密度低的地方运动)而且受到微弱的随机噪声的影响。通常表示为
x t + 1 = x t − ϵ ∇ E ( x t ) + 2 ϵ η t x_{t+1} = x_t -\epsilon \nabla E(x_t)+\sqrt{2\epsilon}\eta_t xt+1=xtϵE(xt)+2ϵ ηt
x x x,表示分子的位置, E ( x ) E(x) E(x)表示分子的能量密度函数, ϵ \epsilon ϵ表示步长, η \eta η表示高斯噪声, t t t表示当前时刻。

参考:

[^1] 郎之万动力学

[^2] NCSN视频讲解

文章信息

发表时间:2019,发表地点:NuerPIS,作者:Song, Yang,机构:Stanford.

原文:Generative Modeling by Estimating Gradients of the Data Distribution

原发表网站引用模板:

@inproceedings{NEURIPS2019_3001ef25,
 author = {Song, Yang and Ermon, Stefano},
 booktitle = {Advances in Neural Information Processing Systems},
 editor = {H. Wallach and H. Larochelle and A. Beygelzimer and F. d\textquotesingle Alch\'{e}-Buc and E. Fox and R. Garnett},
 pages = {},
 publisher = {Curran Associates, Inc.},
 title = {Generative Modeling by Estimating Gradients of the Data Distribution},
 url = {https://proceedings.neurips.cc/paper_files/paper/2019/file/3001ef257407d5a371a96dcd947c7d93-Paper.pdf},
 volume = {32},
 year = {2019}
}
  • 29
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
image-to-Image Translation with Conditional Adversarial Networks(条件对抗网络的图像图像转换)是一种用于图像转换的深度学习方法。它通过训练一个生成器网络和一个判别器网络来实现图像的转换。生成器网络将输入图像转换为目标图像,而判别器网络则试图区分生成图像和真实的目标图像。 这种方法的关键是使用对抗性训练。生成器网络和判别器网络相互竞争,以提高生成器网络生成逼真图像的能力。生成器网络通过最小化判别器网络对生成图像的判别误差来学习生成逼真的图像。判别器网络则通过最大化对生成图像和真实图像的判别能力来学习区分真实图像生成图像。 在条件对抗网络中,生成器网络和判别器网络都接收额外的条件输入,以指导图像转换的过程。这个条件输入可以是任何与图像转换任务相关的信息,例如标签、语义分割图或其他图像。 通过训练生成器网络和判别器网络,条件对抗网络可以实现各种图像转换任务,例如将黑白图像转换为彩色图像、将马的图像转换为斑马的图像等。 这是一个使用条件对抗网络进行图像图像转换的示例代码: ```python import tensorflow as tf from tensorflow.keras import layers # 定义生成器网络 def build_generator(): # 定义生成器网络结构 generator = tf.keras.Sequential() generator.add(layers.Conv2DTranspose(64, (4, 4), strides=(2, 2), padding='same', input_shape=(256, 256, 3))) generator.add(layers.BatchNormalization()) generator.add(layers.ReLU()) generator.add(layers.Conv2DTranspose(32, (4, 4), strides=(2, 2), padding='same')) generator.add(layers.BatchNormalization()) generator.add(layers.ReLU()) generator.add(layers.Conv2DTranspose(3, (4, 4), strides=(2, 2), padding='same', activation='tanh')) return generator # 定义判别器网络 def build_discriminator(): # 定义判别器网络结构 discriminator = tf.keras.Sequential() discriminator.add(layers.Conv2D(64, (4, 4), strides=(2, 2), padding='same', input_shape=(256, 256, 3))) discriminator.add(layers.LeakyReLU()) discriminator.add(layers.Conv2D(128, (4, 4), strides=(2, 2), padding='same')) discriminator.add(layers.BatchNormalization()) discriminator.add(layers.LeakyReLU()) discriminator.add(layers.Conv2D(256, (4, 4), strides=(2, 2), padding='same')) discriminator.add(layers.BatchNormalization()) discriminator.add(layers.LeakyReLU()) discriminator.add(layers.Conv2D(1, (4, 4), strides=(1, 1), padding='same')) return discriminator # 定义条件对抗网络 class cGAN(tf.keras.Model): def __init__(self, generator, discriminator): super(cGAN, self).__init__() self.generator = generator self.discriminator = discriminator def compile(self, g_optimizer, d_optimizer, loss_fn): super(cGAN, self).compile() self.g_optimizer = g_optimizer self.d_optimizer = d_optimizer self.loss_fn = loss_fn def train_step(self, real_images, labels): # 生成器网络生成图像 with tf.GradientTape() as tape: fake_images = self.generator([real_images, labels], training=True) # 判别器网络判别真实图像和假图像 real_output = self.discriminator([real_images, labels], training=True) fake_output = self.discriminator([fake_images, labels], training=True) # 计算生成器和判别器的损失 g_loss = self.loss_fn(fake_output, tf.ones_like(fake_output)) d_loss_real = self.loss_fn(real_output, tf.ones_like(real_output)) d_loss_fake = self.loss_fn(fake_output, tf.zeros_like(fake_output)) d_loss = d_loss_real + d_loss_fake # 更新生成器和判别器的参数 g_gradients = tape.gradient(g_loss, self.generator.trainable_variables) d_gradients = tape.gradient(d_loss, self.discriminator.trainable_variables) self.g_optimizer.apply_gradients(zip(g_gradients, self.generator.trainable_variables)) self.d_optimizer.apply_gradients(zip(d_gradients, self.discriminator.trainable_variables)) return {"g_loss": g_loss, "d_loss": d_loss} # 创建生成器和判别器 generator = build_generator() discriminator = build_discriminator() # 创建条件对抗网络 cgan = cGAN(generator, discriminator) # 编译条件对抗网络 cgan.compile( g_optimizer=tf.keras.optimizers.Adam(learning_rate=0.0002, beta_1=0.5), d_optimizer=tf.keras.optimizers.Adam(learning_rate=0.0002, beta_1=0.5), loss_fn=tf.keras.losses.BinaryCrossentropy(from_logits=True) ) # 训练条件对抗网络 cgan.fit(dataset, epochs=100) # 使用生成器网络进行图像转换 input_image = ... label = ... output_image = generator([input_image, label]) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值