python机器学习基础之绘制高斯朴素贝叶斯的学习曲线

本文介绍了如何画出高斯朴素贝叶斯的学习曲线,通过威斯康星乳腺肿瘤数据集的示例,展示了学习曲线的变化。随着训练数据集的增加,模型的训练得分下降,但交叉验证得分相对稳定,表明朴素贝叶斯在小样本情况下表现良好,适合用于样本量有限的场景。
摘要由CSDN通过智能技术生成

画学习曲线的方法
我们可以把{J}{train}(\theta)和{J}{cv}(\theta)作为纵坐标,画出与训练数据集m的大小关系,这就是学习曲线。通过学习曲线,可以直观地观察到模型的准确性与训练数据集大小的关系。
示例:绘制高斯朴素贝叶斯在威斯康星乳腺肿瘤数据集中的学习曲线

#导入学习曲线库
from sklearn.model_selection import learning_curve
#导入随机拆分工具
from sklearn.model_selection import ShuffleSplit
#定义一个函数绘制学习曲线
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
                        n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)):
    plt.figure()
    plt.title(title)
    if ylim is not None:
        plt.ylim(*ylim)
    #定义横轴标签
    plt.xlabel("Training examples")
    #定义纵轴标签
    plt.ylabel("Score")
    train_sizes, train_scores, test_scores = learning_curve(
       
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曾牛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值