画学习曲线的方法:
我们可以把{J}{train}(\theta)和{J}{cv}(\theta)作为纵坐标,画出与训练数据集m的大小关系,这就是学习曲线。通过学习曲线,可以直观地观察到模型的准确性与训练数据集大小的关系。
示例:绘制高斯朴素贝叶斯在威斯康星乳腺肿瘤数据集中的学习曲线
#导入学习曲线库
from sklearn.model_selection import learning_curve
#导入随机拆分工具
from sklearn.model_selection import ShuffleSplit
#定义一个函数绘制学习曲线
def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None,
n_jobs=1, train_sizes=np.linspace(.1, 1.0, 5)):
plt.figure()
plt.title(title)
if ylim is not None:
plt.ylim(*ylim)
#定义横轴标签
plt.xlabel("Training examples")
#定义纵轴标签
plt.ylabel("Score")
train_sizes, train_scores, test_scores = learning_curve(