python机器学习06:神经网络

本文深入探讨了神经网络的原理,包括添加隐藏层以处理非线性问题,并介绍了模型参数的调节,如隐藏层节点数、激活函数和正则化强度。通过实例展示了参数变化如何影响模型的决策边界。此外,还利用神经网络进行了手写数字识别,取得了93.90%的测试准确率。
摘要由CSDN通过智能技术生成

1.神经网络的原理和非线性矫正

1.神经网络的原理:

在介绍神经网络的原理之前先回顾一下线性回归模型的一般公式:
y ⃗ = w [ 0 ] x [ 0 ] + w [ 1 ] x [

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

曾牛

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值