我的第一篇深度学习相关文章
从我的其他博文可以看出,我以前是搞WebGIS开发的,研究生阶段开始接触深度学习,如今刚开始工作,从事的也是深度学习相关的工作。就在博客记录一下工作上遇到的问题做个笔记。
第一篇就来谈谈深度学习中的Precision,Recall,Accuracy,F1-score,IoU的计算吧,这几种指标容易混淆,他们的计算方式以及含义,这篇文章讲的非常清楚,过多的就不介绍了。
今天主要记录一下在学习这些指标计算的过程中,看到的一些代码的实现方式的理解,如果大家还不熟悉这几种指标的计算可以先看上面提到的文章。
看了一些这几个指标的代码实现,主要实现方式有两种,一种是套公式型,一种是理解型,接下来以语义分割中的二值分割来说明:
1、套公式型
套公式其实就是上面提到的文章,先计算TP,FP,FN,TN,再通过这四个值根据以下公式分别计算出Precision,Recall,Accuracy,F1-score,IoU:
P r e c i s i o n = t p t p + f p Precision = \frac{tp}{tp+fp} Precision=tp+fptp
R e c a l l = t p t p + f n Recall= \frac{tp}{tp+fn} Recall=t