二值分割任务的Precision,Recall,Accuracy,F1-score,IoU的计算方式理解与代码实现

本文是作者作为深度学习初学者的第一篇笔记,主要解释和代码实现二值分割任务中的评估指标,包括Precision、Recall、Accuracy、F1-score和IoU。通过"套公式型"和"理解型"两种方法,阐述如何计算这些关键指标。
摘要由CSDN通过智能技术生成

我的第一篇深度学习相关文章

从我的其他博文可以看出,我以前是搞WebGIS开发的,研究生阶段开始接触深度学习,如今刚开始工作,从事的也是深度学习相关的工作。就在博客记录一下工作上遇到的问题做个笔记。

第一篇就来谈谈深度学习中的Precision,Recall,Accuracy,F1-score,IoU的计算吧,这几种指标容易混淆,他们的计算方式以及含义,这篇文章讲的非常清楚,过多的就不介绍了。

今天主要记录一下在学习这些指标计算的过程中,看到的一些代码的实现方式的理解,如果大家还不熟悉这几种指标的计算可以先看上面提到的文章。

看了一些这几个指标的代码实现,主要实现方式有两种,一种是套公式型,一种是理解型,接下来以语义分割中的二值分割来说明:

1、套公式型

套公式其实就是上面提到的文章,先计算TPFPFNTN,再通过这四个值根据以下公式分别计算出Precision,Recall,Accuracy,F1-score,IoU:
P r e c i s i o n = t p t p + f p Precision = \frac{tp}{tp+fp} Precision=tp+fptp
R e c a l l = t p t p + f n Recall= \frac{tp}{tp+fn} Recall=t

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值