根据P(precision)、R(recall)计算F1和iou

一、首先,了解TP 、TN 、FP、 FN的基本概念

TP:被模型预测为正类的正样本(预测正确的正样本)

TN:被模型预测为负类的负样本(预测正确的负样本)

FP:被模型预测为正类的负样本(预测错误的正样本)

FN:被模型预测为负类的正样本(预测错误的负样本)

二、根据TP 、TN 、FP、 FN计算P(precision)、R(recall)

  • precision 计算公式:

  • recall 计算公式:

 

  • accuracy计算公式:

三、根据P(precision)、R(recall)计算F1-score和iou

F1-Score,又称为平衡F1分数(BalancedScore),它被定义为精确率和召回率的调和平均数。

  • F1计算公式:

iou(Intersection over Union)交并比。计算真实值和预测值集合的交集与并集之比。

  • iou计算公式:

详细推导过程比较简单,如下所示:

首先根据precision 计算公式和recall 计算公式分别计算FP和FN:

补充,FP的推导过程:

PS:以下公式里的P代表precision,即从precision的计算公式推导FP。

补充,FN的推导过程 :

PS:以下公式里的R代表recall,即从recall的计算公式推导FN。

因此可以得到:

 然后把FP和FN代入到IOU的计算公式中:

如有推导错误,欢迎批评指正~~~

整理不易,欢迎一键三连!

### 常见模型训练评估指标解释 #### F1-Score F1-Score 是查准率 (Precision) 查全率 (Recall) 的调平均数,在不平衡的数据集中尤其有用。该值越高表示模型在这两个方面表现越均衡[^2]。 #### 平均交并比 (mIOU) mIOU 表示 Mean Intersection Over Union,用于衡量预测区域与真实标注之间的重叠程度。对于每一个类别分别计算 IOU 后取平均值得到 mIOU。此度量常被用来评估图像分割任务中的模型准确性[^3]。 ```python def iou(pred_mask, true_mask): intersection = np.sum((pred_mask != 0) * (true_mask != 0)) union = np.sum(((pred_mask != 0) + (true_mask != 0)) > 0) if not union: return None return float(intersection)/float(union) def miou(predictions, ground_truths, num_classes): total_iou = [] for cls in range(num_classes): pred_cls = predictions == cls gt_cls = ground_truths == cls class_iou = iou(pred_cls, gt_cls) if class_iou is not None: total_iou.append(class_iou) mean_iou = sum(total_iou)/len(total_iou) return mean_iou ``` #### 整体准确率 (OA) 整体准确率 Overall Accuracy 描述的是所有样本中分类正确的比例。它是最直观但也最简单的评价标准之一,但在处理类间分布极不均匀的情况时可能会有误导性。 #### 精确率 (P) 精确率 Precision 定义为真正例占所有预测正例的比例。高 precision 意味着当模型做出正面判定时其正确性的概率较大。 #### 召回率 (R) 召回率 Recall 或者称为灵敏度 Sensitivity,指的是实际为正的例子中有多少被成功识别出来。较高的 recall 表明模型能够较好地捕捉目标对象。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zy_destiny

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值