如何从tensorflow2的数据集中获得numpy或者pandas数据

当我们使用tensorflow2 时, 很多数据是直接从晚上下载的,tensorflow 的数据集,当我们想看某个的大小或者想画图显示时,需要首先转成numpy array数据,下面是将tensorflow2数据集转成numpy array的方法:

import tensorflow_datasets as tfds  # 导入tensorflow dataset
train = tfds.load(name="mnist", split="train")  # 这里导入了MNIST的训练集,数据格式就是tensroflow dataset
print(train)

输出结果:

<PrefetchDataset shapes: {image: (28, 28, 1), label: ()}, types: {image: tf.uint8, label: tf.int64}>

转为numpy array:

train_array = next(iter(train))
print(train_array.keys())  # 这里train_array是pandas数据格式,输出关键字

输出结果:

dict_keys(['image', 'label'])

包含图像和标签,即可画图操作了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

星空下0516

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值