当我们使用tensorflow2 时, 很多数据是直接从晚上下载的,tensorflow 的数据集,当我们想看某个的大小或者想画图显示时,需要首先转成numpy array数据,下面是将tensorflow2数据集转成numpy array的方法:
import tensorflow_datasets as tfds # 导入tensorflow dataset
train = tfds.load(name="mnist", split="train") # 这里导入了MNIST的训练集,数据格式就是tensroflow dataset
print(train)
输出结果:
<PrefetchDataset shapes: {image: (28, 28, 1), label: ()}, types: {image: tf.uint8, label: tf.int64}>
转为numpy array:
train_array = next(iter(train))
print(train_array.keys()) # 这里train_array是pandas数据格式,输出关键字
输出结果:
dict_keys(['image', 'label'])
包含图像和标签,即可画图操作了。