深入理解Android Volley RequestQueue(1)

#王者杯·14天创作挑战营·第1期#

深入理解Android Volley RequestQueue

一、RequestQueue概述

1.1 RequestQueue的作用

RequestQueue是Volley框架的核心组件之一,负责管理和调度网络请求。它的主要作用包括:

  • 管理请求的生命周期
  • 调度请求的执行顺序
  • 处理请求的缓存逻辑
  • 维护并发请求的数量

1.2 RequestQueue的基本架构

RequestQueue由以下几个主要部分组成:

  • 缓存队列:存储待处理的缓存请求
  • 网络队列:存储待处理的网络请求
  • 缓存线程:负责处理缓存请求
  • 网络线程池:负责处理网络请求
  • 响应分发器:将响应结果分发到主线程

1.3 RequestQueue的优势

  • 高效的请求调度机制
  • 智能的缓存策略
  • 并发请求控制
  • 灵活的请求优先级管理
  • 响应结果的主线程回调

二、RequestQueue的初始化

2.1 基本初始化方法

// Volley.java
/**
 * 创建一个默认配置的RequestQueue实例
 * @param context 应用上下文
 * @return 初始化后的RequestQueue实例
 */
public static RequestQueue newRequestQueue(Context context) {
    return newRequestQueue(context, null);
}

/**
 * 创建一个带有自定义HttpStack的RequestQueue实例
 * @param context 应用上下文
 * @param stack 自定义的HttpStack实现
 * @return 初始化后的RequestQueue实例
 */
public static RequestQueue newRequestQueue(Context context, HttpStack stack) {
    // 创建缓存目录
    File cacheDir = new File(context.getCacheDir(), DEFAULT_CACHE_DIR);
    
    // 如果没有提供自定义HttpStack,则根据Android版本选择合适的实现
    String userAgent = "volley/0";
    try {
        String packageName = context.getPackageName();
        PackageInfo info = context.getPackageManager().getPackageInfo(packageName, 0);
        userAgent = packageName + "/" + info.versionCode;
    } catch (NameNotFoundException e) {
        // 忽略异常,使用默认的userAgent
    }
    
    if (stack == null) {
        if (Build.VERSION.SDK_INT >= 9) {
            // Android 2.3及以上版本使用HttpURLConnection
            stack = new HurlStack();
        } else {
            // Android 2.2及以下版本使用HttpClient
            stack = new HttpClientStack(AndroidHttpClient.newInstance(userAgent));
        }
    }
    
    // 创建网络请求处理器
    Network network = new BasicNetwork(stack);
    
    // 创建RequestQueue实例并启动
    RequestQueue queue = new RequestQueue(new DiskBasedCache(cacheDir), network);
    queue.start();
    
    return queue;
}

2.2 自定义初始化参数

// RequestQueue.java
/**
 * 完整参数的构造函数
 * @param cache 缓存实现
 * @param network 网络请求实现
 * @param threadPoolSize 网络线程池大小
 * @param delivery 响应分发器
 */
public RequestQueue(Cache cache, Network network, int threadPoolSize,
        ResponseDelivery delivery) {
    // 初始化缓存、网络和分发器
    mCache = cache;
    mNetwork = network;
    mDispatchers = new NetworkDispatcher[threadPoolSize];
    mDelivery = delivery;
}

/**
 * 常用的构造函数,使用默认的响应分发器
 * @param cache 缓存实现
 * @param network 网络请求实现
 * @param threadPoolSize 网络线程池大小
 */
public RequestQueue(Cache cache, Network network, int threadPoolSize) {
    // 使用默认的响应分发器,将响应分发到主线程
    this(cache, network, threadPoolSize,
            new ExecutorDelivery(new Handler(Looper.getMainLooper())));
}

/**
 * 最常用的构造函数,使用默认的线程池大小
 * @param cache 缓存实现
 * @param network 网络请求实现
 */
public RequestQueue(Cache cache, Network network) {
    // 默认使用4个网络线程
    this(cache, network, DEFAULT_NETWORK_THREAD_POOL_SIZE);
}

2.3 启动RequestQueue

// RequestQueue.java
/**
 * 启动RequestQueue,创建并启动缓存线程和网络线程池
 */
public void start() {
    // 停止任何正在运行的分发器
    stop();
    
    // 创建并启动缓存分发器
    mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);
    mCacheDispatcher.start();
    
    // 创建并启动网络分发器
    for (int i = 0; i < mDispatchers.length; i++) {
        NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,
                mCache, mDelivery);
        mDispatchers[i] = networkDispatcher;
        networkDispatcher.start();
    }
}

/**
 * 停止RequestQueue,终止所有分发器线程
 */
public void stop() {
    // 停止缓存分发器
    if (mCacheDispatcher != null) {
        mCacheDispatcher.quit();
    }
    
    // 停止所有网络分发器
    for (int i = 0; i < mDispatchers.length; i++) {
        if (mDispatchers[i] != null) {
            mDispatchers[i].quit();
        }
    }
}

三、请求队列的核心组件

3.1 缓存队列(mCacheQueue)

// RequestQueue.java
/** 请求队列使用的缓存队列 */
private final PriorityBlockingQueue<Request<?>> mCacheQueue =
        new PriorityBlockingQueue<Request<?>>();

3.2 网络队列(mNetworkQueue)

// RequestQueue.java
/** 请求队列使用的网络队列 */
private final PriorityBlockingQueue<Request<?>> mNetworkQueue =
        new PriorityBlockingQueue<Request<?>>();

3.3 缓存实现(mCache)

// RequestQueue.java
/** 用于缓存响应的缓存实现 */
private final Cache mCache;

3.4 网络实现(mNetwork)

// RequestQueue.java
/** 用于执行网络请求的网络实现 */
private final Network mNetwork;

3.5 响应分发器(mDelivery)

// RequestQueue.java
/** 用于分发响应的分发器 */
private final ResponseDelivery mDelivery;

3.6 缓存分发器(mCacheDispatcher)

// RequestQueue.java
/** 负责处理缓存请求的线程 */
private CacheDispatcher mCacheDispatcher;

3.7 网络分发器(mDispatchers)

// RequestQueue.java
/** 负责处理网络请求的线程池 */
private NetworkDispatcher[] mDispatchers;

四、请求的添加与处理流程

4.1 添加请求到队列

// RequestQueue.java
/**
 * 将请求添加到队列中进行处理
 * @param request 要添加的请求
 * @return 返回请求本身,便于链式调用
 */
public <T> Request<T> add(Request<T> request) {
    // 将请求与当前RequestQueue关联
    request.setRequestQueue(this);
    
    // 添加请求到全局请求集合,用于跟踪所有请求
    synchronized (mCurrentRequests) {
        mCurrentRequests.add(request);
    }
    
    // 设置请求的序列号
    request.setSequence(getSequenceNumber());
    request.addMarker("add-to-queue");
    
    // 如果请求不需要缓存,则直接添加到网络队列
    if (!request.shouldCache()) {
        mNetworkQueue.add(request);
        return request;
    }
    
    // 否则,将请求添加到缓存队列
    synchronized (mWaitingRequests) {
        String cacheKey = request.getCacheKey();
        // 检查是否有相同缓存键的请求正在等待
        if (mWaitingRequests.containsKey(cacheKey)) {
            // 如果有,则将当前请求添加到等待列表
            Queue<Request<?>> stagedRequests = mWaitingRequests.get(cacheKey);
            if (stagedRequests == null) {
                stagedRequests = new LinkedList<Request<?>>();
            }
            stagedRequests.add(request);
            mWaitingRequests.put(cacheKey, stagedRequests);
            if (VolleyLog.DEBUG) {
                VolleyLog.v("Request for cacheKey=%s is in flight, putting on hold.", cacheKey);
            }
        } else {
            // 如果没有,则将请求添加到等待列表并开始处理
            mWaitingRequests.put(cacheKey, null);
            mCacheQueue.add(request);
        }
        return request;
    }
}

4.2 缓存分发器的工作流程

// CacheDispatcher.java
@Override
public void run() {
    if (VolleyLog.DEBUG) VolleyLog.v("start new cache dispatcher");
    // 设置线程优先级为后台线程
    Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
    
    // 初始化缓存
    mCache.initialize();
    
    Request<?> request;
    while (true) {
        try {
            // 从缓存队列中取出一个请求(阻塞操作)
            request = mCacheQueue.take();
        } catch (InterruptedException e) {
            // 如果线程被中断,则退出循环
            if (mQuit) {
                return;
            }
            continue;
        }
        
        try {
            request.addMarker("cache-queue-take");
            
            // 如果请求已被取消,则跳过处理
            if (request.isCanceled()) {
                request.finish("cache-discard-canceled");
                continue;
            }
            
            // 尝试从缓存中获取数据
            Cache.Entry entry = mCache.get(request.getCacheKey());
            if (entry == null) {
                request.addMarker("cache-miss");
                // 缓存未命中,将请求添加到网络队列
                mNetworkQueue.add(request);
                continue;
            }
            
            // 检查缓存是否已过期
            if (entry.isExpired()) {
                request.addMarker("cache-hit-expired");
                request.setCacheEntry(entry);
                // 缓存已过期,将请求添加到网络队列
                mNetworkQueue.add(request);
                continue;
            }
            
            // 缓存命中且未过期
            request.addMarker("cache-hit");
            // 解析缓存数据
            Response<?> response = request.parseNetworkResponse(
                    new NetworkResponse(entry.data, entry.responseHeaders));
            request.addMarker("cache-hit-parsed");
            
            // 检查是否需要刷新缓存
            if (entry.refreshNeeded()) {
                request.addMarker("cache-hit-refresh-needed");
                request.setCacheEntry(entry);
                
                // 标记响应为中间响应
                response.intermediate = true;
                
                // 将响应发送到主线程
                final Request<?> finalRequest = request;
                mDelivery.postResponse(request, response, new Runnable() {
                    @Override
                    public void run() {
                        try {
                            // 将请求添加到网络队列以刷新缓存
                            mNetworkQueue.add(finalRequest);
                        } catch (Exception e) {
                            // 忽略异常
                        }
                    }
                });
            } else {
                // 不需要刷新缓存,直接将响应发送到主线程
                mDelivery.postResponse(request, response);
            }
            
        } catch (Exception e) {
            VolleyLog.e(e, "Unhandled exception %s", e.toString());
        }
    }
}

4.3 网络分发器的工作流程

// NetworkDispatcher.java
@Override
public void run() {
    // 设置线程优先级为后台线程
    Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
    Request<?> request;
    while (true) {
        try {
            // 从网络队列中取出一个请求(阻塞操作)
            request = mNetworkQueue.take();
        } catch (InterruptedException e) {
            // 如果线程被中断,则退出循环
            if (mQuit) {
                return;
            }
            continue;
        }
        
        try {
            request.addMarker("network-queue-take");
            
            // 如果请求已被取消,则跳过处理
            if (request.isCanceled()) {
                request.finish("network-discard-canceled");
                continue;
            }
            
            // 检查请求是否需要重试
            addTrafficStatsTag(request);
            
            // 执行网络请求
            NetworkResponse networkResponse = mNetwork.performRequest(request);
            request.addMarker("network-http-complete");
            
            // 如果服务器返回304状态码(资源未修改),且请求有缓存条目
            if (networkResponse.notModified && request.hasHadResponseDelivered()) {
                request.finish("not-modified");
                continue;
            }
            
            // 解析网络响应
            Response<?> response = request.parseNetworkResponse(networkResponse);
            request.addMarker("network-parse-complete");
            
            // 如果需要缓存响应,则将响应写入缓存
            if (request.shouldCache() && response.cacheEntry != null) {
                mCache.put(request.getCacheKey(), response.cacheEntry);
                request.addMarker("network-cache-written");
            }
            
            // 标记请求已传递响应
            request.markDelivered();
            
            // 将响应发送到主线程
            mDelivery.postResponse(request, response);
        } catch (VolleyError volleyError) {
            volleyError.setNetworkTimeMs(SystemClock.elapsedRealtime() - request.getStartMs());
            parseAndDeliverNetworkError(request, volleyError);
        } catch (Exception e) {
            VolleyLog.e(e, "Unhandled exception %s", e.toString());
            VolleyError volleyError = new VolleyError(e);
            volleyError.setNetworkTimeMs(SystemClock.elapsedRealtime() - request.getStartMs());
            mDelivery.postError(request, volleyError);
        }
    }
}

五、请求优先级管理

5.1 请求优先级枚举

// Request.java
/**
 * 请求优先级枚举,从低到高
 */
public enum Priority {
    LOW,
    NORMAL,
    HIGH,
    IMMEDIATE
}

/**
 * 获取请求的优先级,默认返回NORMAL
 * @return 请求的优先级
 */
public Priority getPriority() {
    return Priority.NORMAL;
}

5.2 自定义请求优先级

// 自定义请求示例
public class CustomRequest extends Request<String> {
    private final Priority mPriority;
    
    public CustomRequest(int method, String url, Response.Listener<String> listener,
            Response.ErrorListener errorListener, Priority priority) {
        super(method, url, errorListener);
        mPriority = priority;
        setListener(listener);
    }
    
    @Override
    public Priority getPriority() {
        return mPriority != null ? mPriority : super.getPriority();
    }
    
    // 其他方法实现...
}

// 使用示例
CustomRequest request = new CustomRequest(
        Request.Method.GET,
        "https://example.com/api/data",
        response -> {
            // 处理响应
        },
        error -> {
            // 处理错误
        },
        Request.Priority.HIGH // 设置高优先级
);

// 将请求添加到队列
requestQueue.add(request);

5.3 优先级队列的实现

// PriorityBlockingQueue.java
/**
 * PriorityBlockingQueue是一个基于优先级堆的无界阻塞队列
 * 元素按照自然顺序或指定的比较器排序
 */
public class PriorityBlockingQueue<E> extends AbstractQueue<E>
        implements BlockingQueue<E>, java.io.Serializable {
    
    // 内部使用的优先级堆
    private transient Object[] queue;
    
    // 队列的大小
    private transient int size;
    
    // 比较器,如果为null则使用元素的自然顺序
    private transient Comparator<? super E> comparator;
    
    // 用于并发操作的锁
    private final ReentrantLock lock;
    
    // 队列非空条件
    private final Condition notEmpty;
    
    // 用于分配内部数组的原子变量
    private transient volatile int allocationSpinLock;
    
    // 用于序列化的版本UID
    private static final long serialVersionUID = 5595510919245408276L;
    
    // 构造函数...
    
    /**
     * 将元素插入队列,根据优先级排序
     */
    public boolean offer(E e) {
        if (e == null)
            throw new NullPointerException();
        final ReentrantLock lock = this.lock;
        lock.lock();
        int n, cap;
        Object[] array;
        // 如果队列已满,则扩容
        while ((n = size) >= (cap = (array = queue).length))
            tryGrow(array, cap);
        try {
            Comparator<? super E> cmp = comparator;
            // 根据比较器插入元素到正确位置
            if (cmp == null)
                siftUpComparable(n, e, array);
            else
                siftUpUsingComparator(n, e, array, cmp);
            size = n + 1;
            notEmpty.signal();
        } finally {
            lock.unlock();
        }
        return true;
    }
    
    // 其他方法...
}

// RequestQueue中使用PriorityBlockingQueue
private final PriorityBlockingQueue<Request<?>> mCacheQueue =
        new PriorityBlockingQueue<Request<?>>();
        
private final PriorityBlockingQueue<Request<?>> mNetworkQueue =
        new PriorityBlockingQueue<Request<?>>();

六、请求的缓存处理

6.1 缓存接口定义

// Cache.java
/**
 * Volley使用的缓存接口
 */
public interface Cache {
    /**
     * 从缓存中获取数据
     * @param key 缓存键
     * @return 缓存条目,如果不存在则返回null
     */
    public Entry get(String key);
    
    /**
     * 将数据写入缓存
     * @param key 缓存键
     * @param entry 缓存条目
     */
    public void put(String key, Entry entry);
    
    /**
     * 移除指定缓存
     * @param key 缓存键
     */
    public void invalidate(String key, boolean fullExpire);
    
    /**
     * 删除指定缓存
     * @param key 缓存键
     */
    public void remove(String key);
    
    /**
     * 清空所有缓存
     */
    public void clear();
    
    /**
     * 缓存条目结构
     */
    public static class Entry {
        /** 缓存数据 */
        public byte[] data;
        
        /** HTTP响应头 */
        public Map<String, String> responseHeaders;
        
        /** 数据获取时间(从1970年开始的毫秒数) */
        public long serverDate;
        
        /** 数据的ETag */
        public String etag;
        
        /** 缓存的软过期时间(毫秒) */
        public long softTtl;
        
        /** 缓存的绝对过期时间(毫秒) */
        public long ttl;
        
        /**
         * 判断缓存是否已过期
         * @return 如果已过期返回true,否则返回false
         */
        public boolean isExpired() {
            return this.ttl < System.currentTimeMillis();
        }
        
        /**
         * 判断缓存是否需要刷新
         * @return 如果需要刷新返回true,否则返回false
         */
        public boolean refreshNeeded() {
            return this.softTtl < System.currentTimeMillis();
        }
    }
}

6.2 磁盘缓存实现

// DiskBasedCache.java
/**
 * 基于磁盘的缓存实现
 */
public class DiskBasedCache implements Cache {
    /** 默认缓存目录名 */
    private static final String DEFAULT_CACHE_DIR = "volley";
    
    /** 缓存目录 */
    private final File mRootDirectory;
    
    /** 缓存的最大大小(字节) */
    private final int mMaxCacheSizeInBytes;
    
    /** 当前缓存大小(字节) */
    private int mTotalSize = 0;
    
    /** 缓存条目映射 */
    private final HashMap<String, CacheHeader> mEntries = new HashMap<String, CacheHeader>();
    
    /**
     * 缓存条目头部信息,用于存储元数据
     */
    static class CacheHeader {
        /** 缓存键 */
        public String key;
        
        /** 缓存数据的ETag */
        public String etag;
        
        /** 服务器响应时间(从1970年开始的毫秒数) */
        public long serverDate;
        
        /** 数据最后修改时间 */
        public long lastModified;
        
        /** 缓存的软过期时间 */
        public long softTtl;
        
        /** 缓存的绝对过期时间 */
        public long ttl;
        
        /** 响应头 */
        public Map<String, String> responseHeaders;
        
        // 构造函数和序列化/反序列化方法...
        
        /**
         * 从文件读取缓存头部信息
         * @param file 缓存文件
         * @return 解析后的缓存头部信息
         */
        public static CacheHeader readHeader(File file) {
            FileInputStream fis = null;
            try {
                fis = new FileInputStream(file);
                BufferedInputStream bis = new BufferedInputStream(fis);
                DataInputStream dis = new DataInputStream(bis);
                
                // 读取缓存头部信息
                CacheHeader entry = new CacheHeader();
                entry.key = dis.readUTF();
                entry.etag = dis.readUTF();
                entry.serverDate = dis.readLong();
                entry.lastModified = dis.readLong();
                entry.softTtl = dis.readLong();
                entry.ttl = dis.readLong();
                
                // 读取响应头数量
                int headerCount = dis.readInt();
                entry.responseHeaders = new HashMap<String, String>(headerCount);
                
                // 读取所有响应头
                for (int i = 0; i < headerCount; i++) {
                    entry.responseHeaders.put(dis.readUTF(), dis.readUTF());
                }
                
                return entry;
            } catch (IOException e) {
                VolleyLog.d("%s: %s", file.getAbsolutePath(), e.toString());
                if (fis != null) {
                    try {
                        fis.close();
                    } catch (IOException ignored) {
                    }
                }
                return null;
            }
        }
        
        /**
         * 将缓存头部信息写入文件
         * @param file 目标文件
         */
        public boolean writeHeader(File file) {
            FileOutputStream fos = null;
            try {
                fos = new FileOutputStream(file);
                DataOutputStream dos = new DataOutputStream(fos);
                dos.writeUTF(key);
                dos.writeUTF(etag);
                dos.writeLong(serverDate);
                dos.writeLong(lastModified);
                dos.writeLong(softTtl);
                dos.writeLong(ttl);
                
                // 写入响应头数量
                dos.writeInt(responseHeaders.size());
                
                // 写入所有响应头
                for (Map.Entry<String, String> header : responseHeaders.entrySet()) {
                    dos.writeUTF(header.getKey());
                    dos.writeUTF(header.getValue());
                }
                return true;
            } catch (IOException e) {
                VolleyLog.d(e, "Error writing header for %s", file.getAbsolutePath());
                return false;
            } finally {
                if (fos != null) {
                    try {
                        fos.close();
                    } catch (IOException ignored) {
                    }
                }
            }
        }
        
        /**
         * 从缓存头部信息创建完整的缓存条目
         * @param data 缓存数据
         * @return 缓存条目
         */
        public Entry toCacheEntry(byte[] data) {
            Entry e = new Entry();
            e.data = data;
            e.etag = etag;
            e.serverDate = serverDate;
            e.lastModified = lastModified;
            e.softTtl = softTtl;
            e.ttl = ttl;
            e.responseHeaders = responseHeaders;
            return e;
        }
    }
    
    // 其他方法实现...
}

6.3 缓存处理流程

// CacheDispatcher.java
// 缓存分发器处理请求的主要逻辑
while (true) {
    try {
        // 从缓存队列获取请求
        request = mCacheQueue.take();
    } catch (InterruptedException e) {
        // 处理中断...
    }
    
    try {
        // 检查请求是否已取消
        if (request.isCanceled()) {
            request.finish("cache-discard-canceled");
            continue;
        }
        
        // 尝试从缓存获取数据
        Cache.Entry entry = mCache.get(request.getCacheKey());
        if (entry == null) {
            // 缓存未命中,添加到网络队列
            request.addMarker("cache-miss");
            mNetworkQueue.add(request);
            continue;
        }
        
        // 检查缓存是否已过期
        if (entry.isExpired()) {
            request.addMarker("cache-hit-expired");
            request.setCacheEntry(entry);
            mNetworkQueue.add(request);
            continue;
        }
        
        // 缓存命中且未过期
        request.addMarker("cache-hit");
        // 解析网络响应
        Response<?> response = request.parseNetworkResponse(
                new NetworkResponse(entry.data, entry.responseHeaders));
        request.addMarker("cache-hit-parsed");
        
        // 检查是否需要刷新缓存
        if (entry.refreshNeeded()) {
            request.addMarker("cache-hit-refresh-needed");
            request.setCacheEntry(entry);
            
            // 标记为中间响应
            response.intermediate = true;
            
            // 将响应发送到主线程,并在回调中刷新缓存
            final Request<?> finalRequest = request;
            mDelivery.postResponse(request, response, new Runnable() {
                @Override
                public void run() {
                    try {
                        mNetworkQueue.add(finalRequest);
                    } catch (Exception e) {
                        // 忽略异常
                    }
                }
            });
        } else {
            // 不需要刷新,直接发送响应
            mDelivery.postResponse(request, response);
        }
    } catch (Exception e) {
        // 处理异常...
    }
}

七、请求的并发控制

7.1 网络线程池大小设置

// RequestQueue.java
/** 默认的网络线程池大小 */
private static final int DEFAULT_NETWORK_THREAD_POOL_SIZE = 4;

/**
 * 使用默认参数创建RequestQueue
 * @param cache 缓存实现
 * @param network 网络实现
 */
public RequestQueue(Cache cache, Network network) {
    this(cache, network, DEFAULT_NETWORK_THREAD_POOL_SIZE);
}

/**
 * 使用指定的线程池大小创建RequestQueue
 * @param cache 缓存实现
 * @param network 网络实现
 * @param threadPoolSize 网络线程池大小
 */
public RequestQueue(Cache cache, Network network, int threadPoolSize) {
    this(cache, network, threadPoolSize,
            new ExecutorDelivery(new Handler(Looper.getMainLooper())));
}

7.2 并发请求的执行

// RequestQueue.java
/**
 * 启动RequestQueue,创建并启动缓存和网络分发器
 */
public void start() {
    // 停止任何正在运行的分发器
    stop();
    
    // 创建并启动缓存分发器
    mCacheDispatcher = new CacheDispatcher(mCacheQueue, mNetworkQueue, mCache, mDelivery);
    mCacheDispatcher.start();
    
    // 创建并启动网络分发器
    for (int i = 0; i < mDispatchers.length; i++) {
        NetworkDispatcher networkDispatcher = new NetworkDispatcher(mNetworkQueue, mNetwork,
                mCache, mDelivery);
        mDispatchers[i] = networkDispatcher;
        networkDispatcher.start();
    }
}

// NetworkDispatcher.java
@Override
public void run() {
    Process.setThreadPriority(Process.THREAD_PRIORITY_BACKGROUND);
    Request<?> request;
    while (true) {
        try {
            // 从网络队列获取请求(阻塞操作)
            request = mNetworkQueue.take();
        } catch (InterruptedException e) {
            // 处理中断...
        }
        
        try {
            // 检查请求是否已取消
            if (request.isCanceled()) {
                request.finish("network-discard-canceled");
                continue;
            }
            
            // 执行网络请求
            NetworkResponse networkResponse = mNetwork.performRequest(request);
            // 处理响应...
        } catch (VolleyError volleyError) {
            // 处理错误...
        } catch (Exception e) {
            // 处理异常...
        }
    }
}

7.3 并发控制策略

// 可以通过调整线程池大小来控制并发请求数量
RequestQueue requestQueue = Volley.newRequestQueue(context, 8); // 设置8个网络线程

// 也可以通过自定义RequestQueue来实现更复杂的并发控制
public class CustomRequestQueue extends RequestQueue {
    private final Semaphore mSemaphore;
    
    public CustomRequestQueue(Cache cache, Network network, int maxConcurrentRequests) {
        super(cache, network, maxConcurrentRequests);
        // 使用信号量控制最大并发请求数
        mSemaphore = new Semaphore(maxConcurrentRequests);
    }
    
    @Override
    public <T> Request<T> add(Request<T> request) {
        try {
            // 获取许可
            mSemaphore.acquire();
        } catch (InterruptedException e) {
            // 处理中断
            return null;
        }
        
        // 请求完成后释放许可
        request.setRequestFinishedListener(new RequestFinishedListener<Object>() {
            @Override
            public void onRequestFinished(Request<Object> request) {
                mSemaphore.release();
            }
        });
        
        return super.add(request);
    }
}

八、响应分发机制

8.1 响应分发接口

// ResponseDelivery.java
/**
 * 响应分发接口,定义了如何将响应分发到主线程
 */
public interface ResponseDelivery {
    /**
     * 将响应分发到主线程
     * @param request 请求对象
     * @param response 响应对象
     */
    public void postResponse(Request<?> request, Response<?> response);
    
    /**
     * 将响应分发到主线程,并在分发完成后执行回调
     * @param request 请求对象
     * @param response 响应对象
     * @param runnable 回调任务
     */
    public void postResponse(Request<?> request, Response<?> response, Runnable runnable);
    
    /**
     * 将错误分发到主线程
     * @param request 请求对象
     * @param error 错误对象
     */
    public void postError(Request<?> request, VolleyError error);
}

8.2 默认响应分发器实现

// ExecutorDelivery.java
/**
 * 默认的响应分发器实现,使用Executor将响应分发到主线程
 */
public class ExecutorDelivery implements ResponseDelivery {
    /** 用于分发响应的Executor */
    private final Executor mResponsePoster;
    
    /**
     * 创建一个在主线程分发响应的响应分发器
     * @param handler 主线程的Handler
     */
    public ExecutorDelivery(final Handler handler) {
        // 创建一个在Handler所在线程执行的Executor
        mResponsePoster = new Executor() {
            @Override
            public void execute(Runnable command) {
                handler.post(command);
            }
        };
    }
    
    /**
     * 创建一个使用自定义Executor的响应分发器
     * @param executor 自定义的Executor
     */
    public ExecutorDelivery(Executor executor) {
        mResponsePoster = executor;
    }
    
    @Override
    public void postResponse(Request<?> request, Response<?> response) {
        postResponse(request, response, null);
    }
    
    @Override
    public void postResponse(Request<?> request, Response<?> response, Runnable runnable) {
        // 标记请求已分发响应
        request.markDelivered();
        request.addMarker("post-response");
        
        // 将响应分发任务提交到Executor
        mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, runnable));
    }
    
    @Override
    public void postError(Request<?> request, VolleyError error) {
        request.addMarker("post-error");
        Response<?> response = Response.error(error);
        mResponsePoster.execute(new ResponseDeliveryRunnable(request, response, null));
    }
    
    /**
     * 用于在Executor线程执行的响应分发任务
     */
    @SuppressWarnings("rawtypes")
    private class ResponseDeliveryRunnable implements Runnable {
        private final Request mRequest;
        private final Response mResponse;
        private final Runnable mRunnable;
        
        public ResponseDeliveryRunnable(Request request, Response response, Runnable runnable) {
            mRequest = request;
            mResponse = response;
            mRunnable = runnable;
        }
        
        @SuppressWarnings("unchecked")
        @Override
        public void run() {
            // 如果请求已取消,则不进行分发
            if (mRequest.isCanceled()) {
                mRequest.finish("canceled-at-delivery");
                return;
            }
            
            // 分发响应
            if (mResponse.isSuccess()) {
                mRequest.deliverResponse(mResponse.result);
            } else {
                mRequest.deliverError(mResponse.error);
            }
            
            // 如果响应是中间响应(如需要刷新缓存的情况)
            if (mResponse.intermediate) {
                mRequest.addMarker("intermediate-response");
            } else {
                // 完整响应,标记请求完成
                mRequest.finish("done");
            }
            
            // 如果有回调任务,则执行
            if (mRunnable != null) {
                mRunnable.run();
            }
       }
    }
}

8.3 请求的响应回调

// Request.java
/**
 * 将响应结果分发到主线程的回调
 * @param response 响应结果
 */
public void deliverResponse(T response) {
    if (mListener != null) {
        mListener.onResponse(response);
    }
}

/**
 * 将错误结果分发到主线程的回调
 * @param error 错误对象
 */
public void deliverError(VolleyError error) {
    if (mErrorListener != null) {
        mErrorListener.onErrorResponse(error);
    }
}

九、请求的生命周期管理

9.1 请求状态管理

// Request.java
/** 请求的当前状态 */
private enum State {
    PENDING,      // 等待处理
    RUNNING,      // 正在处理
    FINISHED      // 已完成
}

/** 当前状态 */
private State mState = State.PENDING;

/** 请求是否已取消 */
private boolean mCanceled = false;

/** 请求是否已分发响应 */
private boolean mResponseDelivered = false;

/**
 * 取消请求
 */
public void cancel() {
    synchronized (this) {
        mCanceled = true;
        mState = State.FINISHED;
    }
}

/**
 * 检查请求是否已取消
 * @return 如果已取消返回true,否则返回false
 */
public boolean isCanceled() {
    synchronized (this) {
        return mCanceled;
    }
}

/**
 * 标记请求已完成
 * @param tag 完成标记
 */
public void finish(final String tag) {
    if (mRequestQueue != null) {
        mRequestQueue.finish(this);
    }
    mEventLog.add(tag, Thread.currentThread().getId());
    mResponseDelivered = true;
    
    // 释放请求持有的资源
    onFinish();
}

/**
 * 请求完成时调用的方法,子类可重写
 */
protected void onFinish() {
    // 释放请求持有的资源
}

/**
 * 标记响应已分发
 */
public void markDelivered() {
    synchronized (this) {
        mResponseDelivered = true;
    }
}

/**
 * 检查响应是否已分发
 * @return 如果已分发返回true,否则返回false
 */
public boolean hasHadResponseDelivered() {
    synchronized (this) {
        return mResponseDelivered;
    }
}

9.2 请求的完成处理

// RequestQueue.java
/**
 * 标记请求已完成,并从当前请求集合中移除
 * @param request 已完成的请求
 */
<T> void finish(Request<T> request) {
    // 从当前请求集合中移除
    synchronized (mCurrentRequests) {
        mCurrentRequests.remove(request);
    }
    
    // 如果请求在等待队列中,则也从等待队列中移除
    synchronized (mWaitingRequests) {
        String cacheKey = request.getCacheKey();
        Queue<Request<?>> waitingRequests = mWaitingRequests.get(cacheKey);
        if (waitingRequests != null) {
            // 如果该缓存键有等待的请求
            if (waitingRequests.remove(request)) {
                // 如果当前请求在等待队列中,且已被移除
                
                // 如果等待队列为空,则从等待映射中移除
                if (waitingRequests.isEmpty()) {
                    mWaitingRequests.remove(cacheKey);
                }
                
                // 如果请求不需要缓存,则没有必要继续处理等待的请求
                if (!request.shouldCache()) {
                    return;
                }
                
                // 启动下一个等待的请求
                startNextWaitingRequest(cacheKey);
            }
        }
    }
}

/**
 * 启动下一个等待的请求
 * @param cacheKey 缓存键
 */
private void startNextWaitingRequest(String cacheKey) {
    Queue<Request<?>> waitingRequests;
    synchronized (mWaitingRequests) {
        waitingRequests = mWaitingRequests.get(cacheKey);
        if (waitingRequests == null || waitingRequests.isEmpty()) {
            return;
        }
    }
    
    // 将第一个请求移到网络队列
    Request<?> request = waitingRequests.poll();
    if (waitingRequests.isEmpty()) {
        mWaitingRequests.remove(cacheKey);
    }
    
    // 将请求添加到网络队列
    request.addMarker("waiting-to-queue");
    addToNetworkQueue(request);
}

十、请求的统计与监控

10.1 请求时间统计

// Request.java
/** 事件日志,用于记录请求处理过程中的时间点 */
private final EventLog mEventLog = EventLog.obtain();

/** 请求开始时间(毫秒) */
private long mRequestStart = SystemClock.elapsedRealtime();

/**
 * 添加一个事件标记和时间戳
 * @param tag 事件标签
 */
public void addMarker(String tag) {
    mEventLog.add(tag, Thread.currentThread().getId());
}

/**
 * 获取请求的开始时间
 * @return 开始时间(毫秒)
 */
public long getStartMs() {
    return mRequestStart;
}

// EventLog.java
/**
 * 轻量级事件日志,用于记录请求处理过程中的时间点
 */
public class EventLog {
    private static final int MAX_EVENTS = 20;
    
    // 事件标签数组
    private String[] mTags;
    
    // 事件时间戳数组
    private long[] mTimes;
    
    // 事件线程ID数组
    private long[] mThreadIds;
    
    // 当前事件数量
    private int mCount;
    
    // 私有构造函数
    private EventLog() {
        mTags = new String[MAX_EVENTS];
        mTimes = new long[MAX_EVENTS];
        mThreadIds = new long[MAX_EVENTS];
        mCount = 0;
    }
    
    /**
     * 获取一个EventLog实例
     * @return EventLog实例
     */
    public static EventLog obtain() {
        return new EventLog();
    }
    
    /**
     * 添加一个事件
     * @param tag 事件标签
     * @param threadId 线程ID
     */
    public void add(String tag, long threadId) {
        // 如果事件数量超过最大值,则移除最旧的事件
        if (mCount >= MAX_EVENTS) {
            System.arraycopy(mTags, 1, mTags, 0, MAX_EVENTS - 1);
            System.arraycopy(mTimes, 1, mTimes, 0, MAX_EVENTS - 1);
            System.arraycopy(mThreadIds, 1, mThreadIds, 0, MAX_EVENTS - 1);
            mCount--;
        }
        
        // 添加新事件
        mTags[mCount] = tag;
        mTimes[mCount] = SystemClock.elapsedRealtime();
        mThreadIds[mCount] = threadId;
        mCount++;
    }
    
    // 其他方法...
}

10.2 请求监控与调试

// RequestQueue.java
/**
 * 打印所有当前请求的调试信息
 */
public void dump() {
    VolleyLog.v("Current requests:");
    if (mCurrentRequests.isEmpty()) {
        VolleyLog.v("  None");
        return;
    }
    
    // 按时间排序请求
    List<Request<?>> copy = new ArrayList<Request<?>>(mCurrentRequests);
    Collections.sort(copy, new Comparator<Request<?>>() {
        @Override
        public int compare(Request<?> lhs, Request<?> rhs) {
            return (int) (lhs.getStartMs() - rhs.getStartMs());
        }
    });
    
    // 打印每个请求的调试信息
    for (Request<?> request : copy) {
        VolleyLog.v("  %s", request.toString());
    }
}

// Request.java
/**
 * 获取请求的调试信息
 * @return 调试信息字符串
 */
@Override
public String toString() {
    String trafficStatsTag = "0x" + Integer.toHexString(getTrafficStatsTag());
    return (mCanceled ? "[X] " : "[ ] ") + getUrl() + " " + trafficStatsTag + " "
            + (mResponseDelivered ? "(delivered)" : "")
            + (hasHadResponseDelivered() ? "(done)" : "")
            + " " + getClass().getSimpleName()
            + " " + Priority.toString(getPriority())
            + " " + (SystemClock.elapsedRealtime() - mRequestStart) + "ms";
}

10.3 性能监控工具集成

// 可以通过自定义RequestQueue来集成性能监控工具
public class MonitoredRequestQueue extends RequestQueue {
    private final PerformanceMonitor mPerformanceMonitor;
    
    public MonitoredRequestQueue(Cache cache, Network network, PerformanceMonitor monitor) {
        super(cache, network);
        mPerformanceMonitor = monitor;
    }
    
    @Override
    public <T> Request<T> add(Request<T> request) {
        // 在请求开始时记录
        mPerformanceMonitor.onRequestStarted(request);
        
        // 设置请求完成监听器
        request.setRequestFinishedListener(new RequestFinishedListener<Object>() {
            @Override
            public void onRequestFinished(Request<Object> request) {
                // 在请求完成时记录
                mPerformanceMonitor.onRequestFinished(request);
            }
        });
        
        return super.add(request);
    }
}

// 性能监控接口示例
public interface PerformanceMonitor {
    void onRequestStarted(Request<?> request);
    void onRequestFinished(Request<?> request);
    void onNetworkRequestStarted(Request<?> request);
    void onNetworkRequestCompleted(Request<?> request, NetworkResponse response);
    void onNetworkRequestFailed(Request<?> request, VolleyError error);
}

十一、RequestQueue的高级应用

11.1 自定义RequestQueue配置

// 创建自定义配置的RequestQueue
public class CustomVolley {
    private static RequestQueue sRequestQueue;
    
    public static RequestQueue getRequestQueue(Context context) {
        if (sRequestQueue == null) {
            // 创建缓存目录
            File cacheDir = new File(context.getCacheDir(), "custom-volley-cache");
            
            // 创建自定义HttpStack
            HttpStack stack;
            if (Build.VERSION.SDK_INT >= 9) {
                stack = new HurlStack();
            } else {
                stack = new HttpClientStack(AndroidHttpClient.newInstance("custom-user-agent"));
            }
            
            // 创建网络实现
            Network network = new BasicNetwork(stack);
            
            // 创建磁盘缓存(10MB)
            DiskBasedCache cache = new DiskBasedCache(cacheDir, 10 * 1024 * 1024);
            
            // 创建自定义RequestQueue(使用6个网络线程)
            sRequestQueue = new RequestQueue(cache, network, 6);
            
            // 启动RequestQueue
            sRequestQueue.start();
        }
        return sRequestQueue;
    }
}

11.2 批量请求处理

// 批量请求处理示例
public class BatchRequestProcessor {
    private final RequestQueue mRequestQueue;
    private final List<Request<?>> mRequests = new ArrayList<>();
    private final CountDownLatch mCountDownLatch;
    private final BatchListener mListener;
    
    public interface BatchListener {
        void onBatchCompleted(List<Request<?>> successfulRequests, 
                              List<Request<?>> failedRequests);
    }
    
    public BatchRequestProcessor(RequestQueue requestQueue, int requestCount, 
                                BatchListener listener) {
        mRequestQueue = requestQueue;
        mCountDownLatch = new CountDownLatch(requestCount);
        mListener = listener;
    }
    
    public void addRequest(Request<?> request) {
        mRequests.add(request);
        
        // 设置请求完成监听器
        request.setRequestFinishedListener(new RequestFinishedListener<Object>() {
            @Override
            public void onRequestFinished(Request<Object> request) {
                // 减少计数器
                mCountDownLatch.countDown();
                
                // 检查所有请求是否已完成
                if (mCountDownLatch.getCount() == 0) {
                    // 分离成功和失败的请求
                    List<Request<?>> successfulRequests = new ArrayList<>();
                    List<Request<?>> failedRequests = new ArrayList<>();
                    
                    for (Request<?> req : mRequests) {
                        if (req.hasHadResponseDelivered() && !req.isCanceled()) {
                            successfulRequests.add(req);
                        } else {
                            failedRequests.add(req);
                        }
                    }
                    
                    // 回调结果
                    if (mListener != null) {
                        mListener.onBatchCompleted(successfulRequests, failedRequests);
                    }
                }
            }
        });
        
        // 将请求添加到队列
        mRequestQueue.add(request);
    }
}

// 使用示例
BatchRequestProcessor processor = new BatchRequestProcessor(requestQueue, 3, 
    new BatchRequestProcessor.BatchListener() {
        @Override
        public void onBatchCompleted(List<Request<?>> successfulRequests, 
                                    List<Request<?>> failedRequests) {
            Log.d(TAG, "Batch completed: " + successfulRequests.size() + " succeeded, " 
                  + failedRequests.size() + " failed");
        }
    });

// 添加请求
processor.addRequest(request1);
processor.addRequest(request2);
processor.addRequest(request3);

11.3 请求优先级控制

// 优先级控制示例
public void sendPrioritizedRequests() {
    RequestQueue requestQueue = Volley.newRequestQueue(context);
    
    // 创建高优先级请求
    Request<?> highPriorityRequest = new StringRequest(
            Request.Method.GET,
            "https://example.com/api/high-priority",
            response -> {
                // 处理响应
            },
            error -> {
                // 处理错误
            }
    ) {
        @Override
        public Priority getPriority() {
            return Priority.HIGH;
        }
    };
    
    // 创建低优先级请求
    Request<?> lowPriorityRequest = new StringRequest(
            Request.Method.GET,
            "https://example.com/api/low-priority",
            response -> {
                // 处理响应
            },
            error -> {
                // 处理错误
            }
    ) {
        @Override
        public Priority getPriority() {
            return Priority.LOW;
        }
    };
    
    // 添加请求到队列
    requestQueue.add(highPriorityRequest);
    requestQueue.add(lowPriorityRequest);
}

十二、RequestQueue的常见问题与解决方案

12.1 请求队列阻塞问题

问题描述:请求队列中的请求长时间未被处理,导致界面卡顿。

可能原因

  1. 网络线程池大小不足
  2. 某个请求耗时过长,阻塞了队列
  3. 缓存线程被阻塞

解决方案

  1. 增加网络线程池大小
RequestQueue requestQueue = new RequestQueue(cache, network, 8); // 使用8个网络线程
  1. 检查耗时过长的请求并优化
  2. 确保缓存操作高效,避免阻塞缓存线程

12.2 内存泄漏问题

问题描述:应用中出现内存泄漏,导致内存占用过高。

可能原因

  1. 请求持有Activity或其他上下文的强引用
  2. 请求完成后未及时释放资源
  3. 未正确取消不再需要的请求

解决方案

  1. 使用弱引用持有上下文
public class MyRequest extends Request<String> {
    private WeakReference<Context> mContextRef;
    
    public MyRequest(Context context, String url, Listener<String> listener, 
                    ErrorListener errorListener) {
        super(Method.GET, url, errorListener);
        mContextRef = new WeakReference<>(context);
        setListener(listener);
    }
    
    // 其他方法...
}
  1. 在请求的onFinish()方法中释放资源
@Override
protected void onFinish() {
    super.onFinish();
    // 释放持有的资源
}
  1. 在Activity销毁时取消相关请求
@Override
protected void onDestroy() {
    super.onDestroy();
    if (requestQueue != null) {
        requestQueue.cancelAll(this);
    }
}

12.3 缓存不一致问题

问题描述:缓存数据与服务器数据不一致,导致显示旧数据。

可能原因

  1. 缓存策略设置不当
  2. 服务器数据更新后,客户端未及时刷新缓存
  3. 缓存键设置不合理,导致数据混淆

解决方案

  1. 调整缓存策略
request.setShouldCache(true); // 启用缓存
request.setCacheEntry(new Cache.Entry() {
    @Override
    public boolean isExpired() {
        // 自定义过期判断逻辑
        return false;
    }
    
    @Override
    public boolean refreshNeeded() {
        // 自定义刷新判断逻辑
        return true;
    }
});
  1. 手动刷新缓存
// 清除特定缓存
requestQueue.getCache().invalidate("cache-key", true);

// 或清空所有缓存
requestQueue.getCache().clear();
  1. 使用唯一且合理的缓存键
@Override
public String getCacheKey() {
    return getUrl() + "-" + getParams(); // 使用URL和参数组合作为缓存键
}

12.4 多线程并发问题

问题描述:在多线程环境下,RequestQueue出现异常或数据不一致。

可能原因

  1. 多个线程同时操作RequestQueue
  2. 请求状态在多线程环境下未正确同步
  3. 共享资源未加锁保护

解决方案

  1. 在单线程中操作RequestQueue
// 使用Handler在主线程操作RequestQueue
Handler mainHandler = new Handler(Looper.getMainLooper());
mainHandler.post(() -> {
    requestQueue.add(request);
});
  1. 确保请求状态同步
public synchronized void updateRequestStatus(Request<?> request, Status status) {
    // 更新请求状态的同步方法
}
  1. 对共享资源加锁
private final Object mLock = new Object();

public void processSharedResource() {
    synchronized (mLock) {
        // 处理共享资源的代码
    }
}

12.5 网络请求超时问题

问题描述:在网络状况不佳的情况下,请求经常超时失败。

可能原因

  1. 默认超时时间设置过短
  2. 服务器响应时间过长
  3. 网络波动导致请求延迟

解决方案

  1. 增加请求超时时间
// 设置请求超时时间为30秒(默认通常为5秒)
request.setRetryPolicy(new DefaultRetryPolicy(
    30000, // 初始超时时间(毫秒)
    DefaultRetryPolicy.DEFAULT_MAX_RETRIES, // 最大重试次数
    DefaultRetryPolicy.DEFAULT_BACKOFF_MULT // 重试延迟倍数
));
  1. 实现合理的重试策略
// 创建自定义重试策略
RetryPolicy retryPolicy = new DefaultRetryPolicy(
    15000, // 超时时间15秒
    3, // 最多重试3次
    DefaultRetryPolicy.DEFAULT_BACKOFF_MULT // 重试延迟倍数
);
request.setRetryPolicy(retryPolicy);
  1. 考虑使用异步请求避免UI卡顿

12.6 大文件下载问题

问题描述:使用Volley下载大文件时出现内存溢出或下载失败。

可能原因

  1. Volley默认将整个响应加载到内存中
  2. 大文件下载过程中内存占用过高
  3. 没有实现断点续传机制

解决方案

  1. 使用自定义Request实现流式下载
public class FileDownloadRequest extends Request<File> {
    private final File mDestinationFile;
    private final Listener<File> mListener;

    public FileDownloadRequest(String url, File destinationFile,
                               Listener<File> listener, ErrorListener errorListener) {
        super(Method.GET, url, errorListener);
        mDestinationFile = destinationFile;
        mListener = listener;
    }

    @Override
    protected Response<File> parseNetworkResponse(NetworkResponse response) {
        try {
            // 将响应数据写入文件
            FileOutputStream fos = new FileOutputStream(mDestinationFile);
            fos.write(response.data);
            fos.close();
            return Response.success(mDestinationFile, HttpHeaderParser.parseCacheHeaders(response));
        } catch (IOException e) {
            return Response.error(new VolleyError(e));
        }
    }

    @Override
    protected void deliverResponse(File response) {
        mListener.onResponse(response);
    }
}
  1. 实现断点续传功能
// 设置Range头实现断点续传
@Override
public Map<String, String> getHeaders() throws AuthFailureError {
    Map<String, String> headers = super.getHeaders();
    if (mDestinationFile.exists()) {
        headers.put("Range", "bytes=" + mDestinationFile.length() + "-");
    }
    return headers;
}
  1. 考虑使用更适合大文件下载的库如OkHttp

12.7 请求重复发送问题

问题描述:相同请求被多次发送,浪费网络资源。

可能原因

  1. 界面刷新频繁触发重复请求
  2. 没有正确管理请求生命周期
  3. 没有实现请求去重机制

解决方案

  1. 使用请求标记管理请求
// 设置请求标记
request.setTag("unique_tag");

// 取消相同标记的请求
requestQueue.cancelAll("unique_tag");
  1. 实现请求去重逻辑
// 在添加请求前检查是否已有相同请求
private boolean hasRequestWithUrl(String url) {
    synchronized (mCurrentRequests) {
        for (Request<?> request : mCurrentRequests) {
            if (request.getUrl().equals(url)) {
                return true;
            }
        }
    }
    return false;
}
  1. 使用缓存机制避免重复请求

十三、RequestQueue的性能优化技巧

13.1 合理配置线程池大小

根据应用的网络请求特性和设备性能,合理调整网络线程池大小:

  • 对于大多数应用,默认的4个线程已经足够
  • 对于需要大量并发请求的应用,可以增加到6-8个线程
  • 过多的线程会导致上下文切换开销增加,反而降低性能
// 创建具有8个网络线程的RequestQueue
RequestQueue requestQueue = new RequestQueue(cache, network, 8);

13.2 优化缓存策略

根据数据更新频率和重要性,设置不同的缓存策略:

  • 对于静态数据(如应用配置),设置较长的缓存时间
  • 对于动态数据(如用户信息),设置较短的缓存时间或禁用缓存
  • 实现智能缓存刷新机制
// 设置自定义缓存时间
public class CustomRequest extends Request<String> {
    // ... 其他方法

    @Override
    public Priority getPriority() {
        return Priority.HIGH;
    }

    @Override
    public Cache.Entry parseNetworkResponse(NetworkResponse response) {
        Cache.Entry entry = super.parseNetworkResponse(response);
        if (entry != null) {
            // 设置缓存10分钟后过期
            entry.softTtl = System.currentTimeMillis() + 10 * 60 * 1000;
            // 设置缓存1小时后必须刷新
            entry.ttl = System.currentTimeMillis() + 60 * 60 * 1000;
        }
        return entry;
    }
}

13.3 使用压缩请求和响应

启用GZIP压缩可以显著减少数据传输量,提高请求响应速度:

// 添加GZIP请求头
@Override
public Map<String, String> getHeaders() throws AuthFailureError {
    Map<String, String> headers = super.getHeaders();
    if (headers == null || headers.isEmpty()) {
        headers = new HashMap<String, String>();
    }
    headers.put("Accept-Encoding", "gzip");
    return headers;
}

13.4 实现请求批处理

对于需要同时发送多个请求的场景,考虑实现请求批处理:

// 批量请求处理器
public class BatchRequestProcessor {
    private final RequestQueue mRequestQueue;
    private final List<Request<?>> mRequests = new ArrayList<>();
    private final CountDownLatch mCountDownLatch;
    private final BatchListener mListener;

    public interface BatchListener {
        void onBatchCompleted(List<Request<?>> successfulRequests, 
                              List<Request<?>> failedRequests);
    }

    public BatchRequestProcessor(RequestQueue requestQueue, int requestCount, 
                                BatchListener listener) {
        mRequestQueue = requestQueue;
        mCountDownLatch = new CountDownLatch(requestCount);
        mListener = listener;
    }

    // 添加请求并设置完成监听器
    public void addRequest(Request<?> request) {
        mRequests.add(request);
        
        request.setRequestFinishedListener(new RequestFinishedListener<Object>() {
            @Override
            public void onRequestFinished(Request<Object> request) {
                mCountDownLatch.countDown();
                
                if (mCountDownLatch.getCount() == 0) {
                    List<Request<?>> successful = new ArrayList<>();
                    List<Request<?>> failed = new ArrayList<>();
                    
                    for (Request<?> req : mRequests) {
                        if (req.hasHadResponseDelivered() && !req.isCanceled()) {
                            successful.add(req);
                        } else {
                            failed.add(req);
                        }
                    }
                    
                    if (mListener != null) {
                        mListener.onBatchCompleted(successful, failed);
                    }
                }
            }
        });
        
        mRequestQueue.add(request);
    }
}

13.5 优化响应数据解析

对于JSON或XML等结构化数据,使用高效的解析库(如Gson、Jackson):

// 使用Gson解析JSON响应
public class GsonRequest<T> extends Request<T> {
    private final Gson gson = new Gson();
    private final Class<T> clazz;
    private final Map<String, String> headers;
    private final Listener<T> listener;

    /**
     * 构建一个新的Gson请求
     * @param method HTTP请求方法
     * @param url 请求URL
     * @param clazz 响应数据类型
     * @param headers 请求头
     * @param listener 响应监听器
     * @param errorListener 错误监听器
     */
    public GsonRequest(int method, String url, Class<T> clazz, Map<String, String> headers,
            Listener<T> listener, ErrorListener errorListener) {
        super(method, url, errorListener);
        this.clazz = clazz;
        this.headers = headers;
        this.listener = listener;
    }

    @Override
    public Map<String, String> getHeaders() throws AuthFailureError {
        return headers != null ? headers : super.getHeaders();
    }

    @Override
    protected Response<T> parseNetworkResponse(NetworkResponse response) {
        try {
            String json = new String(
                    response.data,
                    HttpHeaderParser.parseCharset(response.headers));
            return Response.success(
                    gson.fromJson(json, clazz),
                    HttpHeaderParser.parseCacheHeaders(response));
        } catch (UnsupportedEncodingException e) {
            return Response.error(new ParseError(e));
        } catch (JsonSyntaxException e) {
            return Response.error(new ParseError(e));
        }
    }

    @Override
    protected void deliverResponse(T response) {
        listener.onResponse(response);
    }
}

十四、RequestQueue在不同场景下的最佳实践

14.1 应用启动时的批量数据加载

在应用启动时,通常需要加载多个配置或初始化数据:

  • 使用请求优先级确保关键数据优先加载
  • 实现请求批处理,在所有数据加载完成后通知UI
  • 使用缓存机制避免重复加载相同数据
// 应用启动时的数据加载示例
public void loadInitialData() {
    // 创建高优先级请求获取用户信息
    Request userRequest = new StringRequest(
        Request.Method.GET,
        "https://api.example.com/user",
        response -> {
            // 处理用户信息
        },
        error -> {
            // 处理错误
        }
    ) {
        @Override
        public Priority getPriority() {
            return Priority.HIGH;
        }
    };
    
    // 创建中等优先级请求获取配置信息
    Request configRequest = new StringRequest(
        Request.Method.GET,
        "https://api.example.com/config",
        response -> {
            // 处理配置信息
        },
        error -> {
            // 处理错误
        }
    ) {
        @Override
        public Priority getPriority() {
            return Priority.NORMAL;
        }
    };
    
    // 使用批处理处理器
    BatchRequestProcessor processor = new BatchRequestProcessor(
        requestQueue, 
        2, 
        (successfulRequests, failedRequests) -> {
            if (failedRequests.isEmpty()) {
                // 所有请求成功完成,通知UI
                handler.post(() -> {
                    // 更新UI
                });
            } else {
                // 处理失败的请求
            }
        }
    );
    
    processor.addRequest(userRequest);
    processor.addRequest(configRequest);
}

14.2 列表数据的分页加载

在实现列表数据的分页加载时:

  • 使用唯一的缓存键区分不同页的数据
  • 实现加载更多时的请求管理
  • 处理列表刷新和加载更多的不同场景
// 列表数据分页加载示例
public class PagedDataLoader {
    private static final int PAGE_SIZE = 20;
    private int mCurrentPage = 0;
    private boolean mIsLoading = false;
    private boolean mHasMoreData = true;
    
    private final RequestQueue mRequestQueue;
    private final String mBaseUrl;
    private final Response.Listener<String> mSuccessListener;
    private final Response.ErrorListener mErrorListener;
    
    public PagedDataLoader(RequestQueue requestQueue, String baseUrl,
                          Response.Listener<String> successListener,
                          Response.ErrorListener errorListener) {
        mRequestQueue = requestQueue;
        mBaseUrl = baseUrl;
        mSuccessListener = successListener;
        mErrorListener = errorListener;
    }
    
    // 加载第一页数据(刷新)
    public void refresh() {
        mCurrentPage = 0;
        mHasMoreData = true;
        loadPage(mCurrentPage);
    }
    
    // 加载下一页数据
    public void loadMore() {
        if (!mIsLoading && mHasMoreData) {
            loadPage(mCurrentPage + 1);
        }
    }
    
    private void loadPage(int page) {
        mIsLoading = true;
        
        // 构建请求URL,包含分页参数
        String url = mBaseUrl + "?page=" + page + "&size=" + PAGE_SIZE;
        
        StringRequest request = new StringRequest(
            Request.Method.GET,
            url,
            response -> {
                mIsLoading = false;
                
                // 解析响应数据
                List<DataItem> items = parseResponse(response);
                
                // 判断是否还有更多数据
                if (items.size() < PAGE_SIZE) {
                    mHasMoreData = false;
                } else {
                    mCurrentPage = page;
                }
                
                // 通知成功加载
                if (mSuccessListener != null) {
                    mSuccessListener.onResponse(response);
                }
            },
            error -> {
                mIsLoading = false;
                
                // 通知加载失败
                if (mErrorListener != null) {
                    mErrorListener.onErrorResponse(error);
                }
            }
        ) {
            @Override
            public String getCacheKey() {
                // 使用URL作为缓存键,确保不同页的数据有不同的缓存
                return url;
            }
        };
        
        // 添加到请求队列
        mRequestQueue.add(request);
    }
    
    // 解析响应数据的方法
    private List<DataItem> parseResponse(String response) {
        // 解析JSON数据
        return new ArrayList<>();
    }
    
    // 检查是否正在加载
    public boolean isLoading() {
        return mIsLoading;
    }
    
    // 检查是否还有更多数据
    public boolean hasMoreData() {
        return mHasMoreData;
    }
}

14.3 实时数据更新

对于需要实时更新的数据:

  • 实现长连接或轮询机制
  • 设置适当的缓存策略,避免频繁请求相同数据
  • 使用WebSocket或Server-Sent Events替代传统HTTP请求
// 实时数据更新示例
public class RealTimeDataManager {
    private static final int POLLING_INTERVAL = 30000; // 30秒轮询间隔
    private final RequestQueue mRequestQueue;
    private final Handler mHandler = new Handler(Looper.getMainLooper());
    private final String mDataUrl;
    private final Response.Listener<String> mListener;
    private final Response.ErrorListener mErrorListener;
    
    private StringRequest mCurrentRequest;
    private boolean mIsPolling = false;
    
    public RealTimeDataManager(RequestQueue requestQueue, String dataUrl,
                              Response.Listener<String> listener,
                              Response.ErrorListener errorListener) {
        mRequestQueue = requestQueue;
        mDataUrl = dataUrl;
        mListener = listener;
        mErrorListener = errorListener;
    }
    
    // 开始轮询
    public void startPolling() {
        if (!mIsPolling) {
            mIsPolling = true;
            fetchData();
        }
    }
    
    // 停止轮询
    public void stopPolling() {
        mIsPolling = false;
        if (mCurrentRequest != null) {
            mCurrentRequest.cancel();
            mCurrentRequest = null;
        }
        mHandler.removeCallbacksAndMessages(null);
    }
    
    // 获取数据
    private void fetchData() {
        if (!mIsPolling) {
            return;
        }
        
        // 取消当前请求(如果有)
        if (mCurrentRequest != null) {
            mCurrentRequest.cancel();
        }
        
        // 创建新请求
        mCurrentRequest = new StringRequest(
            Request.Method.GET,
            mDataUrl,
            response -> {
                mCurrentRequest = null;
                
                // 处理响应
                if (mListener != null) {
                    mListener.onResponse(response);
                }
                
                // 安排下一次轮询
                mHandler.postDelayed(this::fetchData, POLLING_INTERVAL);
            },
            error -> {
                mCurrentRequest = null;
                
                // 处理错误
                if (mErrorListener != null) {
                    mErrorListener.onErrorResponse(error);
                }
                
                // 安排下一次轮询,即使本次失败
                mHandler.postDelayed(this::fetchData, POLLING_INTERVAL);
            }
        ) {
            @Override
            public Priority getPriority() {
                return Priority.LOW; // 轮询请求优先级较低
            }
            
            @Override
            public String getCacheKey() {
                // 添加时间戳确保每次请求都不使用缓存
                return super.getCacheKey() + "_" + System.currentTimeMillis();
            }
        };
        
        // 添加到请求队列
        mRequestQueue.add(mCurrentRequest);
    }
}

14.4 图片加载与缓存

虽然Volley内置了ImageLoader,但对于复杂的图片加载需求,建议使用专门的图片加载库:

  • 对于简单场景,可以使用Volley的ImageRequest
  • 对于复杂场景,推荐使用Glide、Picasso或Fresco
  • 实现图片缓存清理策略,避免占用过多存储空间
// 使用Volley加载图片示例
public class ImageLoaderExample {
    private final RequestQueue mRequestQueue;
    private final ImageLoader mImageLoader;
    private final LruCache<String, Bitmap> mImageCache;
    
    public ImageLoaderExample(Context context) {
        mRequestQueue = Volley.newRequestQueue(context);
        
        // 创建图片缓存,使用应用可用内存的1/8作为缓存大小
        int maxMemory = (int) (Runtime.getRuntime().maxMemory() / 1024);
        int cacheSize = maxMemory / 8;
        
        mImageCache = new LruCache<String, Bitmap>(cacheSize) {
            @Override
            protected int sizeOf(String key, Bitmap bitmap) {
                // 计算图片大小(KB)
                return bitmap.getRowBytes() * bitmap.getHeight() / 1024;
            }
        };
        
        // 创建ImageLoader
        mImageLoader = new ImageLoader(mRequestQueue, new ImageLoader.ImageCache() {
            @Override
            public Bitmap getBitmap(String url) {
                return mImageCache.get(url);
            }
            
            @Override
            public void putBitmap(String url, Bitmap bitmap) {
                mImageCache.put(url, bitmap);
            }
        });
    }
    
    // 加载图片到ImageView
    public void loadImage(String url, ImageView imageView) {
        mImageLoader.get(url, ImageLoader.getImageListener(
            imageView,
            R.drawable.default_image, // 默认图片
            R.drawable.error_image    // 错误图片
        ));
    }
    
    // 加载图片并设置自定义尺寸
    public void loadImage(String url, ImageView imageView, int maxWidth, int maxHeight) {
        ImageLoader.ImageContainer container = mImageLoader.get(url,
            ImageLoader.getImageListener(
                imageView,
                R.drawable.default_image,
                R.drawable.error_image
            ),
            maxWidth,
            maxHeight
        );
        
        // 如果图片已经在缓存中,可以立即使用
        Bitmap cachedBitmap = container.getBitmap();
        if (cachedBitmap != null) {
            imageView.setImageBitmap(cachedBitmap);
        }
    }
}

十五、RequestQueue与其他网络库的对比

15.1 Volley vs OkHttp

  • Volley优势

    • 内置请求队列和优先级管理
    • 强大的缓存机制
    • 响应自动分发到主线程
    • 适合轻量级、高频的网络请求
  • OkHttp优势

    • 更底层的HTTP实现,性能更高
    • 支持HTTP/2和WebSocket
    • 丰富的拦截器机制
    • 更好的连接池管理
    • 适合复杂网络场景和大文件下载

15.2 Volley vs Retrofit

  • Volley优势

    • 无需预先定义API接口
    • 更灵活的请求和响应处理
    • 内置图片加载功能
    • 适合快速开发和轻量级应用
  • Retrofit优势

    • 使用注解定义API,代码更简洁
    • 与RxJava等响应式编程库集成良好
    • 支持多种数据格式转换(JSON、XML等)
    • 更适合大型项目和RESTful API调用

15.3 Volley vs HttpURLConnection/HttpClient

  • Volley优势

    • 高级的请求队列和调度机制
    • 智能缓存策略,减少网络请求
    • 自动处理请求优先级
    • 内置JSON解析和图片加载
    • 更友好的错误处理机制
  • HttpURLConnection/HttpClient优势

    • 更低的学习成本
    • 更底层的控制能力
    • 适合简单的网络请求场景

十六、RequestQueue的未来发展趋势

16.1 与Kotlin协程的集成

随着Kotlin成为Android开发的首选语言,Volley可能会加强与Kotlin协程的集成,提供更简洁的异步编程体验:

// 假设Volley未来支持协程的示例
suspend fun fetchData(url: String): Response<String> = suspendCoroutine { continuation ->
    val request = object : StringRequest(Method.GET, url,
        Response.Listener { response ->
            continuation.resume(Response.success(response))
        },
        Response.ErrorListener { error ->
            continuation.resumeWithException(error)
        }
    ) {}
    
    requestQueue.add(request)
}

16.2 对HTTP/3和QUIC的支持

随着HTTP/3和QUIC协议的普及,Volley可能会增加对这些新技术的支持,进一步提升网络请求性能:

// 假设未来Volley支持HTTP/3的示例
RequestQueue queue = Volley.newRequestQueue(context, new Http3Stack());

16.3 与Jetpack库的深度集成

Volley可能会与Jetpack库(如ViewModel、LiveData、Data Binding等)进行更深度的集成,提供更现代化的Android开发体验:

// 假设Volley与ViewModel集成的示例
class MyViewModel : ViewModel() {
    private val _data = MutableLiveData<String>()
    val data: LiveData<String> = _data
    
    init {
        loadData()
    }
    
    private fun loadData() {
        val request = StringRequest(
            Request.Method.GET,
            "https://api.example.com/data",
            { response ->
                _data.value = response
            },
            { error ->
                // 处理错误
            }
        )
        
        // 自动管理请求生命周期
        RequestManager.getInstance().addRequest(this, request)
    }
}

16.4 更智能的缓存和预加载机制

未来的Volley可能会引入更智能的缓存和预加载机制,基于用户行为和网络条件自动优化数据加载策略:

// 假设未来的智能缓存配置示例
CachePolicy policy = new CachePolicy.Builder()
    .setExpirationTime(3600000) // 1小时
    .setRefreshInterval(600000) // 10分钟
    .setPreloadOnWiFi(true)
    .setPreloadOnCellular(false)
    .build();
    
request.setCachePolicy(policy);

16.5 增强的性能监控和调试工具

Volley可能会提供更强大的性能监控和调试工具,帮助开发者更轻松地识别和解决网络请求相关的问题:

// 假设未来的性能监控示例
RequestQueue queue = Volley.newRequestQueue(context);
PerformanceMonitor monitor = new PerformanceMonitor() {
    @Override
    public void onRequestStarted(Request<?> request) {
        // 记录请求开始
    }
    
    @Override
    public void onRequestCompleted(Request<?> request, long duration) {
        // 记录请求完成和耗时
    }
    
    @Override
    public void onRequestFailed(Request<?> request, VolleyError error) {
        // 记录请求失败
    }
};

queue.setPerformanceMonitor(monitor);

通过对Android Volley RequestQueue的深入分析,我们可以看到它是一个设计精良、功能强大的网络请求框架。虽然现在有许多新的网络库出现,但Volley仍然在许多场景下表现出色,特别是在轻量级应用和需要精细控制请求队列的场景中。理解RequestQueue的工作原理和内部机制,有助于我们更高效地使用Volley,优化应用的网络请求性能,提升用户体验。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Android 小码蜂

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值