gensim功能和函数介绍

#将句子转成词典中对应的ID值和出现的次数对应的关系
texts = [['human', 'interface', 'computer''human'],
 ['survey', 'user', 'computer', 'system', 'response', 'time'],
 ['eps', 'user', 'interface', 'system'],
 ['system', 'human', 'system', 'eps'],
 ['user', 'response', 'time'],
 ['trees'],
 ['graph', 'trees'],
 ['graph', 'minors', 'trees'],
 ['graph', 'minors', 'survey']]

from gensim import corpora
#词典
dictionary = corpora.Dictionary(texts)
#格式 词ID:数量
corpus = [dictionary.doc2bow(text) for text in texts]
print(corpus[0]) # [(0, 1), (1, 1), (2, 1)]

#将上述处理后的语料出现此处根据TF-IDF计算成各自对应的值
from gensim import models
tfidf = models.TfidfModel(corpus)
doc_bow = [(0, 1), (1, 1)]
print tfidf[doc_bow] # [(0, 0.70710678), (1, 0.70710678)]
#保存TF-IDF模型
tfidf.save("./model.tfidf")
#加载TF-IDF模型
tfidf = models.TfidfModel.load("./model.tfidf")
# 构造LSI模型并将待检索的query和文本转化为LSI主题向量
# 转换之前的corpus和query均是BOW向量
query = [(0, 1), (1, 1), (2, 1)]
#这个模型可以把语料中的稀疏的变量编程一个密集的向量,使用一个密集的向量可以表示这个句子
lsi_model = models.LsiModel(corpus, id2word=dictionary, num_topics=2)

documents = lsi_model[corpus]
print(documents[0])
query_vec = lsi_model[query]


from gensim.similarities import MatrixSimilarity
index = MatrixSimilarity(documents)

index.save('/tmp/deerwester.index')
index = MatrixSimilarity.load('/tmp/deerwester.index')

#检查了与所有语料中的余弦相似度
sims = index[query_vec] # return: an iterator of tuple (idx, sim)
print(sims)

总体的来说,首先用DOC2BOW表示一条句子,存在离散的缺点,之后使用TF-IDF根据不同的词所在环境的不同重要程度不同进一步的进行了句子的向量表示,最后使用LSI(LSA)模型对每个句子用一个密集的向量进行表示,表示完毕后,可以使用余弦相似度算法对相似度进行计算。接下来详细介绍LSI(LSA)模型

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值