6 tabNet: 堪比xgboost的深度学习模型

本文介绍了TabNet模型,它利用神经网络模拟决策树,通过特征掩码和特殊设计的全连接层实现特征选择。文章详细解释了模型的工作原理,尤其是在处理表格数据和类别变量时的方法,并提到了与XGBoost和LightGBM的比较。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前用过这个模型,现在也就想写一下。看过很多资料,这个文章最舒服AI研习社 - 研习AI产学研新知,助力AI学术开发者成长。大家可以参考下。

tabnet的主体思想是用nn来表示决策树,深度学习能够对多种类型数据进行编码,并将其结合起来减轻特征工程的依赖、端到端的表征学习。

1 特征掩码 

  

        输入是特征向量 [x_1,x_2],首先分别通过两个Mask层将x_1  和 x_2单独筛选(屏蔽一个,下面介绍如何筛选)出来,然后通过一个weight和bias都被专门设定过的全连接层,并将两个FC层的输出通过ReLU激活函数后相加起来,最后经过一个Softmax激活函数作为最终输出。如果与决策树的流程进行对比,我们可以发现其实这个神经网络的每一层都对应着决策树的相应步骤:Mask层对应的是决策树中的特征选择,这个很好理解;FC层+ReLU对应阈值判断ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值