3 大模型推理速度

本文的介绍只涉及大模型推理部分,至于微调还是预训练等等不做深入研究。

0 背景介绍

首先我们要知道什么是大模型推理。其实,就是大模型如何输出,怎么输出,输出什么的过程。目前大模型的架构一般decoder-only架构的大模型通常采用自回归的方式生成输出语句,自回归的方式是逐token的进行输出。在每一次生成步中,大模型将过去的全部token序列作为输入,包括输入token以及刚刚生成的token,并生成下一个token。随着序列长度的增加,生过文本这一过程的时间成本也显著增加。大语言模型的『推理』本质上就是根据上下文(context)的向量空间找概率最高的下一个token的向量,每一个token无论输入输出都代表一个向量,token数量越多,向量包含的信息越丰富,当输入的token数量很多,或者token的组合特殊(所谓Prompt Engineering),就大概率触发模型觉得下一个token不应该是输出结束,这样就会输出更多内容。

### 大语言模型推理性能优化策略 #### 算子优化 为了提高大语言模型的推理速度,算子优化是一个重要的手段。通过改进底层运算符(即算子),可以显著减少计算时间和资源消耗。具体措施包括但不限于融合多个操作成单个高效的操作、利用硬件特性如SIMD指令集以及GPU并行处理能力来加速特定类型的矩阵乘法和其他密集型计算任务[^1]。 ```python import torch.nn as nn class OptimizedModel(nn.Module): def __init__(self, config): super(OptimizedModel, self).__init__() # 使用高效的卷积实现或其他优化过的层结构 pass def forward(self, input_ids): # 实现前向传播逻辑,并应用各种算子级别的优化技巧 outputs = None # 假设这是经过一系列优化后的输出结果 return outputs ``` #### 模型压缩 考虑到较大的模型虽然具有更强的表现力但也带来了较高的计算开销,在不影响精度的前提下适当减小模型尺寸有助于加快推断过程。常用的方法有量化(Quantization),剪枝(Pruning) 和蒸馏(Distillation)[^2]: - **量化**:将浮点数权重转换为低比特整数表示形式; - **剪枝**:移除那些对最终预测影响较小甚至无贡献的部分神经元连接; - **蒸馏**:训练一个小的学生网络模仿大型教师网络的行为特征。 这些技术可以在保持较高准确度的同时大幅削减所需的存储空间和运行时间。 #### 利用专用工具库 NVIDIA 提供了一个名为 TensorRT-LLM 的高性能推理框架专门针对大规模预训练语言模型进行了定制化开发和支持。该平台不仅简化了部署流程还内置了许多先进的算法和技术用于进一步增强执行效能。开发者可以通过简单的API调用来加载预先训练好的模型文件并将它们编译成为高度优化的形式以便于实际应用场景中的快速响应需求[^3]。 ```bash pip install nvidia-tensorrt tensorrt_llm ``` ```python from tensorrt_llm import TRTInferenceSession session = TRTInferenceSession('path/to/optimized/model.engine') output = session.run(input_data) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值