本文的介绍只涉及大模型推理部分,至于微调还是预训练等等不做深入研究。
0 背景介绍
首先我们要知道什么是大模型推理。其实,就是大模型如何输出,怎么输出,输出什么的过程。目前大模型的架构一般decoder-only架构的大模型通常采用自回归的方式生成输出语句,自回归的方式是逐token的进行输出。在每一次生成步中,大模型将过去的全部token序列作为输入,包括输入token以及刚刚生成的token,并生成下一个token。随着序列长度的增加,生过文本这一过程的时间成本也显著增加。大语言模型的『推理』本质上就是根据上下文(context)的向量空间找概率最高的下一个token的向量,每一个token无论输入输出都代表一个向量,token数量越多,向量包含的信息越丰富,当输入的token数量很多,或者token的组合特殊(所谓Prompt Engineering),就大概率触发模型觉得下一个token不应该是输出结束,这样就会输出更多内容。