QC-LDPC简介

本文介绍了准循环LDPC(QC-LDPC)码的基本概念,强调了其相对于传统LDPC码的结构优势,如易于存储和降低编译码复杂度。内容涵盖QC-LDPC码的校验矩阵特点,包括循环子矩阵的定义和构建,以及如何通过基矩阵和移位次数矩阵来构造校验矩阵。文章指出,构造过程中关键步骤包括生成优化的基矩阵以避免小环,而相关算法如PEG和环消除算法在实际应用中起到重要作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

QC-LDPC简介

QC-LDPC(Quasi-Cyslic Low-Density Parity-Check Codes)即准循环LDPC码。之前介绍的LDPC码基本属于随机构造法,构造出的码性能很好,但校验矩阵具有不规律性,存在校验矩阵存储于读取困难、编码复杂度高等问题,相对难以实现。准循环LDPC码是结构化LDPC码的重要子集,其奇偶校验矩阵可以分成多个大小相等的方阵,每个方阵都是单位矩阵的循环移位矩阵或全0矩阵,非常便于存储器的存储和寻址,从而大大降低了LDPC码的编译码复杂度,并且具有重复累计结构的准循环LDPC码能够实现线性复杂度的快速编码。因此,目前实际中所使用的LDPC码大都使用这种校验矩阵构造方式。

QC-LDPC码校验矩阵的子矩阵具有如下特点:

(1) 每个子矩阵是一个方阵;

(2) 循环子矩阵的任一行(列)都是上一行(列)向右移动一位得到的,特别的,矩阵的第一行(列)由最后一行(列)循环右移一位得到;

(3) 循环矩阵完全可以由其第一行或者第一列决定。

即准循环LDPC码的H是由许多维数相同的循环子矩阵构成。下面的矩阵便是由单位矩阵循环右移一位得到的循环子矩阵

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值